精英家教网 > 高中数学 > 题目详情

【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:

2

3

4

5

6

7

(1)请用相关系数加以说明之间存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).

附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:

,相关系数公式为:.

参考数据:

.

【答案】(1) 之间存在线性相关关系;(2)0.38 ,.

【解析】试题分析:

(1)由题意求得,说明之间存在线性相关关系;

(2)结合所给数据可求得回归方程为,.据此预测当时,对应的值为.

试题解析:

(1)由题意,计算

.

,说明之间存在线性相关关系;

(2).

.

的线性回归方程为.

代入回归方程得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:向量 =(1,﹣3), =(﹣2,m),且 ⊥( ).
(1)求实数m的值;
(2)当k + 平行时,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在某港口处获悉,其正东方向距离20n mile的处有一艘渔船遇险等待营救,此时救援船在港口的南偏西30°距港口10n mile的C处,救援船接到救援命令立即从C处沿直线前往B处营救渔船.

(1)求接到救援命令时救援船距渔船的距离;

(2)试问救援船在C处应朝北偏东多少度的方向沿直线前往B处救援?(已知

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中在点处的导数, 为常数).

(1)求的值;

(2)求函数的单调区间;

(3)设函数,若函数在区间上单调递增,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:
①若α、β为第一象限角,且α>β,则sinα>sinβ
②函数y=|sinx|与y=|tanx|的最小正周期相同
③函数f(x)=sin(x+ )在[﹣ ]上是增函数;
④若函数f(x)=asinx﹣bcosx的图象的一条对称轴为直线x= ,则a+b=0.
其中正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)证明: ,直线都不是曲线的切线;

(Ⅱ)若,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是 的中点.

(1)求证: 平面

(2)求二面角的大小;

(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,底面,底面是梯形,.

(1)求证:平面平面

(2)在线段上是否存在一点,使平面,若存在,请确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线为,抛物线上一点的横坐标为1,且到焦点的距离为2.

(1)求抛物线的方程;

(2)设是抛物线上异于原点的两个不同点,直线的倾斜角分别为,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案