【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:
2 | 3 | 4 | 5 | 6 | 7 | |
(1)请用相关系数加以说明与之间存在线性相关关系(当时,说明与之间具有线性相关关系);
(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).
附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:
,,相关系数公式为:.
参考数据:
,,,.
科目:高中数学 来源: 题型:
【题目】如图,在某港口处获悉,其正东方向距离20n mile的处有一艘渔船遇险等待营救,此时救援船在港口的南偏西30°距港口10n mile的C处,救援船接到救援命令立即从C处沿直线前往B处营救渔船.
(1)求接到救援命令时救援船距渔船的距离;
(2)试问救援船在C处应朝北偏东多少度的方向沿直线前往B处救援?(已知)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个结论:
①若α、β为第一象限角,且α>β,则sinα>sinβ
②函数y=|sinx|与y=|tanx|的最小正周期相同
③函数f(x)=sin(x+ )在[﹣ , ]上是增函数;
④若函数f(x)=asinx﹣bcosx的图象的一条对称轴为直线x= ,则a+b=0.
其中正确结论的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是, 是的中点.
(1)求证: 平面;
(2)求二面角的大小;
(3)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱柱中,底面,底面是梯形,,,.
(1)求证:平面平面;
(2)在线段上是否存在一点,使平面,若存在,请确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,准线为,抛物线上一点的横坐标为1,且到焦点的距离为2.
(1)求抛物线的方程;
(2)设是抛物线上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com