精英家教网 > 高中数学 > 题目详情
某渔场养鱼,第一年鱼的重量的增长率为200%,预计以后每年的增长率都是前一年增长率的一半;
(1)饲养五年后,鱼的预计重量是原来的多少倍?
(2)如果由于环境污染,每年损失为预计鱼重的10%,那么经过多少年后,鱼重开始减少?
分析:(1)由题意知第n年的增长率为2•(
1
2
)
n-1
=
1
2n-2
,则第n年的鱼重为an=(1+ 
1
2n-2
)an-1
,求解即可.
(2)设经过n年后,鱼重开始减少,由题意知
9
10
an-1(1+
1
2n-2
) ≥an-1
anan(1+
1
2n-1
) •
9
10
,∴18<2n≤36,∴n=5.即经过5年后,鱼重开始减少.
解答:解:(1)增长率形成首项为2,公比为
1
2
的等比数列,从而第n年的增长率为2•(
1
2
)
n-1
=
1
2n-2

则第n年的鱼重为an=(1+ 
1
2n-2
)an-1
,∴a1=3a0,a2=6a0,a3=9a0a4=
5
4
a3=
45
4
a0
a5=
405
32
a0

(2)设经过n年后,鱼重开始减少,由于an=an-1(1+
1
2n-2
) (1-10%)=
9
10
an-1(1+
1
2n-1
)

9
10
an-1(1+
1
2n-2
) ≥an-1
anan(1+
1
2n-1
) •
9
10
,∴18<2n≤36,∴n=5.
答:经过5年后,鱼重开始减少.
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:022

某渔场养鱼,第一年鱼的产量增长率为200%,以后每年的产量增长率都是上一年的一半,饲养五年后,鱼的产量预计是原来的________倍.(用假分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

某渔场养鱼,第一年:鱼的重量增长200%,以后每年的重量增长率是前一年增长率的一半.

(1)当饲养4年后,鱼的重量是原来的多少倍?

(2)如果由于某种原因,每年损失预计重量的10%,那么经过多少年后鱼的总重量开始减少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某渔场养鱼,鱼的重量增长率第一年为400%,以后每年重量增长率都是前一年的三分之一。同时鱼每年要损失预计重量的10%。预计养鱼的费用第一年是鱼苗成本的20%,以后每年的费用Mt与年数t满足关系式(其中为鱼苗成本,)。问该渔场的鱼养几年后全部捕捞,鱼的产值高且费用较少(设鱼苗价30元/斤,成鱼市场价7元/斤)。

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第6章 数列):6.7 数列的应用(解析版) 题型:解答题

某渔场养鱼,第一年鱼的重量的增长率为200%,预计以后每年的增长率都是前一年增长率的一半;
(1)饲养五年后,鱼的预计重量是原来的多少倍?
(2)如果由于环境污染,每年损失为预计鱼重的10%,那么经过多少年后,鱼重开始减少?

查看答案和解析>>

同步练习册答案