精英家教网 > 高中数学 > 题目详情
已知F是抛物线y=x2的焦点,M、N是该抛物线上的两点,|MF|+|NF|=3,则线段MN的中点到x轴的距离为______.
抛物线的焦点为(0,
1
4
),准线为y=-
1
4
,过M,N分别作准线的垂线,
则|MM'|=|MF|,|NN'|=|NF|,
所以|MM'|+|NN'|=|MF|+|NF|=3,
所以中位线|PP′|=
|MM′|+|NN′|
2
=
3
2

所以中点P到x轴的距离为|PP′|-
1
4
=
3
2
-
1
4
=
5
4

故答案为:
5
4

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知点A(-2,1),y2=-4x的焦点是F,P是y2=-4x上的点,为使|PA|+|PF|取得最小值,则P点的坐标是(  )
A.(-
1
4
,1)
B.(-2,2
2
C.(-
1
4
,-1)
D.(-2,-2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P在抛物线y2=4x上,则点P到直线L1:4x-3y+6=0的距离和到直线L2:x=-1的距离之和的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设AB为抛物线y2=2px(p>0,p为常数)的焦点弦,M为AB的中点,若M到y轴的距离等于抛物线的通径长,则|AB|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知P,Q为抛物线f(x)=
x2
2
上两点,点P,Q的横坐标分别为4,-2,过P、Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点作直线与抛物线交于A、B两点,以AB为直径的圆与抛物线的准线的位置关系是(  )
A.相离B.相切C.相交D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=
1
4
x2
的焦点坐标是(  )
A.(
1
16
,0)
B.(0,
1
16
C.(0,1)D.(1,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=
1
2
x
的焦点到准线的距离为(  )
A.
1
8
B.
1
4
C.
1
2
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线l与抛物线相切于点P(2,1),且与轴交于点A,定点B的坐标为(2,0) .

(1)若动点M满足,求点M的轨迹C;
(2)若过点B的直线l(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

同步练习册答案