精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数,求的极值;

(2)证明:.

(参考数据:

【答案】(1)见解析;(2)见证明

【解析】

1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;

2)问题转化为证exx2xlnx10,根据xlnxxx1),问题转化为只需证明当x0时,ex2x2+x10恒成立,令kx)=ex2x2+x1,(x0),根据函数的单调性证明即可.

(1),当

上递增,在上递减,取得极大值,极大值为,无极大值.

(2)要证fx+1exx2

即证exx2xlnx10

先证明lnxx1,取hx)=lnxx+1,则h′(x)=

易知hx)在(01)递增,在(1+∞)递减,

hx)≤h1)=0,即lnxx1,当且仅当x1时取“=”,

xlnxxx1),exx2xlnxex2x2+x1

故只需证明当x0时,ex2x2+x10恒成立,

kx)=ex2x2+x1,(x0),则k′(x)=ex4x+1

Fx)=k′(x),则F′(x)=ex4,令F′(x)=0,解得:x2ln2

F′(x)递增,故x02ln2]时,F′(x)≤0Fx)递减,即k′(x)递减,

x2ln2+∞)时,F′(x)>0Fx)递增,即k′(x)递增,

k′(2ln2)=58ln20k′(0)=20k′(2)=e28+10

由零点存在定理,可知x102ln2),x22ln22),使得k′(x1)=k′(x2)=0

0xx1xx2时,k′(x)>0kx)递增,当x1xx2时,k′(x)<0kx)递减,故kx)的最小值是k0)=0kx2),由k′(x2)=0,得4x21

kx2)=2+x21=﹣(x22)(2x21),∵x22ln22),∴kx2)>0

x0时,kx)>0,原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】擎天柱为了防止魔方落入霸天虎手中,打算用激光刀将其销毁.擎天柱使用的方法是:每次切割可将魔方分成两个体积之比为的六面体,每个六面体恰包含魔方的一个面,且任两次操作得到的截面在魔方中均有交点,而魔方的属性决定每次切割只能暂时将它割开,而无法分离,且只要它有的小正方体区域始终未被割到,就无法被销毁,证明:无论擎天柱切割多少次,均无法销毁魔方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数,试讨论的单调性;

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数,求的极值;

(2)证明:.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为支援武汉的防疫,某医院职工踊跃报名,其中报名的医生18人,护士12人,医技6人,根据需要,从中抽取一个容量为n的样本参加救援队,若采用系统抽样和分层抽样,均不用剔除人员.当抽取n+1人时,若采用系统抽样,则需剔除1个报名人员,则抽取的救援人员为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为计算, 设计了如图所示的程序框图,则空白框中应填入( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布

1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;

22020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元).的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且,其中.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.

附:若随机变量,则;

对于一组数据,其回归线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次数学竞赛中,某些选手是朋友关系.记所有选手的集合为X,对集合X的子集Y,若可以将这些人两两分组,且每组中两名选手均是朋友关系,则称子集Y“可两两分组”.已知集合X不可两两分组,且对于任意选手,若A、B不是朋友关系,则可两两分组,且X中没有一个人与其他所有人均为朋友关系证明:对任意选手,若a、b为朋友关系,b、c为朋友关系,则a、c也为朋友关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:

时间

人数

15

60

90

75

45

15

1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.

列联表如下

流动人员

非流动人员

总计

办理社保手续所需

时间不超过4

办理社保手续所需

时间超过4

60

总计

210

90

300

2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

同步练习册答案