【题目】设函数
(I)讨论的单调性;
(II)若有两个极值点和,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.
【答案】:(I)的定义域为
令
当故上单调递增.
当的两根都小于0,在上,,故上单调递增.
当的两根为,
当时,;当时,;当时,,故分别在上单调递增,在上单调递减.
(II)由(I)知,.
因为,所以
又由(I)知,.于是
若存在,使得则.即.亦即
再由(I)知,函数在上单调递增,而,所以这与式矛盾.故不存在,使得
【解析】
【试题分析】(1)先对函数求导,再运用导数与函数的单调性的关系分析讨论函数的符号,进而运用分类整合思想对实数进行分三类进行讨论并判定其单调性,求出单调区间;(2)先假设满足题设条件的参数存在,再借助题设条件,推得,即,亦即
进而转化为判定函数在上是单调递增的问题,然后借助导数与函数单调性的关系运用反证法进行分析推证,从而作出判断:
解:(Ⅰ)定义域为,
,
令,
①当时,,,故在上单调递增,
②当时,,的两根都小于零,在上,,
故在上单调递增,
③当时,,的两根为,
当时,;当时,;当时,;
故分别在上单调递增,在上单调递减.
(Ⅱ)由(Ⅰ)知,,
因为.
所以,
又由(1)知,,于是,
若存在,使得,则,即,
亦即()
再由(Ⅰ)知,函数在上单调递增,
而,所以,这与()式矛盾,
故不存在,使得.
科目:高中数学 来源: 题型:
【题目】椭圆将圆的圆周分为四等份,且椭圆的离心率为.
(1)求椭圆的方程;
(2)若直线与椭圆交于不同的两点,且的中点为,线段的垂直平分线为,直线与轴交于点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右焦点为,直线与轴交于点,假设(其中为坐标原点)
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,,,平面PAB,D,E分别是AC,BC上的点,且平面PAB.
(1)求证平面PDE;
(2)若D为线段AC中点,求直线PC与平面PDE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为(其中α为参数),曲线C2:(x﹣1)2+y2=1,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和曲线C2的极坐标方程;
(2)若射线θ=(ρ>0)与曲线C1,C2分别交于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的多面体ABCDEF满足:正方形ABCD与正三角形FBC所在的两个平面互相垂直,FB∥AE且FB=2EA.
(1)证明:平面EFD⊥平面ABFE;
(2)若AB=2,求多面体ABCDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,g(x)=b(x﹣1),其中a≠0,b≠0
(1)若a=b,讨论F(x)=f(x)﹣g(x)的单调区间;
(2)已知函数f(x)的曲线与函数g(x)的曲线有两个交点,设两个交点的横坐标分别为x1,x2,证明:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com