精英家教网 > 高中数学 > 题目详情

【题目】设函数

(I)讨论的单调性;

II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.

【答案】:(I的定义域为

上单调递增.

的两根都小于0,在上,,故上单调递增.

的两根为

时,;当时,;当时,,故分别在上单调递增,在上单调递减.

II)由(I)知,

因为,所以

又由(I)知,.于是

若存在,使得.即.亦即

再由(I)知,函数上单调递增,而,所以这与式矛盾.故不存在,使得

【解析】

试题分析】(1)先对函数求导,再运用导数与函数的单调性的关系分析讨论函数的符号,进而运用分类整合思想对实数进行分三类进行讨论并判定其单调性,求出单调区间;(2)先假设满足题设条件的参数存在,再借助题设条件,推得,即,亦即

进而转化为判定函数上是单调递增的问题,然后借助导数与函数单调性的关系运用反证法进行分析推证,从而作出判断:

解:(Ⅰ)定义域为

①当时,,故上单调递增,

②当时,的两根都小于零,在上,

上单调递增,

③当时,的两根为

时,;当时,;当时,

分别在上单调递增,在上单调递减.

(Ⅱ)由(Ⅰ)知,

因为.

所以,

又由(1)知,,于是

若存在,使得,则,即

亦即

再由(Ⅰ)知,函数上单调递增,

,所以,这与()式矛盾,

故不存在,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数fx)=|3x4||x+1|

1)解不等式fx)>5

2)若存在实数x满足ax+afx)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆将圆的圆周分为四等份,且椭圆的离心率为.

1)求椭圆的方程;

2)若直线与椭圆交于不同的两点,且的中点为,线段的垂直平分线为,直线轴交于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,直线轴交于点,假设(其中为坐标原点)

1)求椭圆的方程;

2)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,平面PABDE分别是ACBC上的点,且平面PAB.

1)求证平面PDE

2)若D为线段AC中点,求直线PC与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,若函数4个不同的零点,且,则的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为(其中α为参数),曲线C2:(x﹣1)2+y2=1,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.

(1)求曲线C1的普通方程和曲线C2的极坐标方程;

(2)若射线θ=(ρ>0)与曲线C1,C2分别交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体ABCDEF满足:正方形ABCD与正三角形FBC所在的两个平面互相垂直,FBAEFB2EA.

1)证明:平面EFD⊥平面ABFE

2)若AB2,求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gx)=bx1),其中a≠0b≠0

1)若ab,讨论Fx)=fx)﹣gx)的单调区间;

2)已知函数fx)的曲线与函数gx)的曲线有两个交点,设两个交点的横坐标分别为x1x2,证明:

查看答案和解析>>

同步练习册答案