精英家教网 > 高中数学 > 题目详情

【题目】是定义在R上的函数,对R都有,且当0时,<0,=1.

(1)求的值

(2)求证:为奇函数;

(3)求在[-2,4]上的最值.

【答案】(1) f(0)=0,f(-2)=2; (2)证明见解析;(3)f(x)max=2, f(x)min=-4.

【解析】

试题本题为抽象函数问题,解决抽象函数的基本方法有两种:一是赋值法,二是“打回原型”,本题第一步采用赋值法,先给x,y赋值0,求出f(0),再给x,y赋值-1,求出f(--2);判断函数奇偶性,就是寻求f(-x)f(x)的关系,给y赋值-x,得出f(-x)=-f(x),判断出函数的奇偶性;再根据函数的奇偶性,得出函数图像的对称性,再利用赋值法判断函数的单调性,根据函数的奇偶性和单调性求出函数的最值.

试题解析:

(1)f(x)的定义域为R,

xy=0,则f(0)=f(0)+f(0),

f(0)=0,

f(-1)=1,

f(-2)=f(-1)+f(-1)=2,

(2)令y=-x,则f(xx)=f(x)+f(-x),

f(-x)+f(x)=f(0)=0,

f(-x)=-f(x),

f(x)是奇函数.

(3)设x2>x1

f(x2)-f(x1)=f(x2)+f(-x1)=f(x2x1)

x2x1>0,∴f(x2x1)<0,

f(x2)-f(x1)<0,

f(x2)<f(x1),

f(x)在R上为减函数.

f(2)=-f(-2)=-2,

f(4)=f(2)+f(2)=-4,

f(x)在[-2,4]上为减函数,

f(x)maxf(-2)=2,

f(x)minf(4)=-4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知各项都是正数的数列{an}的前n项和为Sn , Sn=an2+ an , n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:b1=1,bn﹣bn1=2an(n≥2),求数列{ }的前n项和Tn
(3)若Tn≤λ(n+4)对任意n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的定义域是R,对于任意实数 ,恒有,且当 时,

1求证: ,且当 时,有

2判断 R上的单调性;

3设集合AB,若A∩B,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)= sin2x﹣ cos2x+1的图象向左平移 个单位,再向下平移1个单位,得到函数y=g(x)的图象,则下列关予函数y=g(x)的说法错误的是(
A.函数y=g(x)的最小正周期为π
B.函数y=g(x)的图象的一条对称轴为直线x=
C. g(x)dx=
D.函数y=g(x)在区间[ ]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.

(1)排成前后两排,前排3人,后排4人;(2)全体站成一排,甲不站排头也不站排尾;

(3)全体站成一排,女生必须站在一起;(4)全体站成一排,男生互不相邻.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某一等差数列的首项为,公差为展开式中的常数项,其中除以19的余数,则此数列前多少项的和最大?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|﹣2|x﹣1|.
(1)作出函数f(x)的图象;
(2)若不等式 ≤f(x)有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=9x﹣2a3x+3:

(1)若a=1,x[0,1]时,求fx)的值域;

(2)当x[﹣1,1]时,求fx)的最小值ha);

(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解关于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集为(﹣1,3),求实数a,b的值.

查看答案和解析>>

同步练习册答案