分析 (1)利用和角公式及降次公式对f(x)进行化简,得到f(x)=Asin(ωx+φ)形式,代入周期公式即可;
(2)由x的范围求出ωx+φ的范围,结合正弦函数单调性得出最值和相应的x.
解答 解:(1)f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$-1
=cosx($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{2}$sinxcosx-$\frac{\sqrt{3}}{2}$cos2x+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{2}$($\frac{1+cos2x}{2}$)+$\frac{\sqrt{3}}{4}$-1
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{4}$cos2x-1
=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)-1,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)∵x∈[-$\frac{π}{4}$,$\frac{π}{4}$],∴2x-$\frac{π}{3}$∈[-$\frac{5π}{6}$,$\frac{π}{6}$],
∴当2x-$\frac{π}{3}$=$\frac{π}{6}$,即x=$\frac{π}{4}$时,fmax(x)=$\frac{1}{2}×\frac{1}{2}-1$=-$\frac{3}{4}$;
当2x-$\frac{π}{3}$=-$\frac{π}{2}$,即x=-$\frac{π}{12}$时,fmin(x)=$\frac{1}{2}×(-1)-1$=-$\frac{3}{2}$.
点评 本题考查了三角函数的恒等变换及性质,对二次项进行降次及和差公式运用是常用方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f (-3)>f (-4) | B. | f (-3)<f (-4) | C. | f (-3)=f (-4) | D. | 无法比较 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com