精英家教网 > 高中数学 > 题目详情

【题目】已知点,圆的方程为,点为圆上的动点,过点的直线被圆截得的弦长为

(1)求直线的方程;

(2)求面积的最大值.

【答案】(1)(2)7

【解析】

(1)先讨论直线的斜率是否存在,利用(为圆的半径,为圆心到直线的距离)列方程解得直线的斜率,再由点斜式写出直线方程;
(2)因为为定值,只需求出点到直线的最大值即可,问题得解。

解:(1)①当直线的斜率不存在时,的方程为,易知此直线满足题意;
②当直线的斜率存在时,设的方程为
∵圆的圆心,半径

因为过点的直线被圆截得的弦长为

所以(其中为圆心到直线的距离)

所以圆心到直线的距离为

,解得
所以所求的直线方程为
综上所述,所求的直线方程为
(2)由题意得,点到直线的距离的最大值为7,
的面积的最大值为7.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校高一学生有1000名学生参加一次数学小测验,随机抽取200名学生的测验成绩得如图所示的频率分布直方图:

1)求该学校高一学生随机抽取的200名学生的数学平均成绩和标准差(同一组中的数据用该组区间的中点值做代表);

2)试估计该校高一学生在这一次的数学测验成绩在区间之内的概率是多少?测验成绩在区间之外有多少位学生?(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的导函数

(1)若曲线与曲线相切,求实数的值;

(2)设函数为函数的极大值,且

①求的值;

②求证:对于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足).

(Ⅰ)证明数列为等差数列,并求的通项公式;

(Ⅱ)设数列的前项和为,若数列满足,且对任意的恒成立,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点O的椭圆C经过点A,且点F0)为其右焦点.

(1)求椭圆C的方程;

(2)是否存在直线与椭圆C交于B,D两点,满足,且原点到直线l的距离为?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升血液中的含药量(微克)与服药的时间(小时)之间近似满足如图所示的曲线,其中是线段,曲线是函数,且是常数)的图象.

1)写出服药后关于的函数关系式;

2)据测定,每毫升血液中的含药量不少于微克时治疗疾病有效.假设某人第一次服药为早上,为保持疗效,第二次服药最迟应当在当天几点钟?

3)若按(2)中的最迟时间服用第二次药,则第二次服药后小时,该病人每毫升血液中的含药量为多少微克?(精确到微克)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定所对的边分别是,在所在平面作直线的某两边相交,沿折成一个空间图形,将由分成的小三角形的不在上的顶点与另一部分的顶点连接,形成一个三棱锥或四棱锥。问:

(1)当时,如何作,并折成何种锥体,才能使所得锥体体积最大?(需详证)

(2)当时,如何作,并折成何种锥体,才能使所得锥体体积最大?(叙述结果,不要证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若对任意的,都存在,使得,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:,并整理得到频率分布直方图(如图所示).

)已知样本中分数小于40的学生有5人,试估计总体中分数在区间内的人数.

)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

同步练习册答案