精英家教网 > 高中数学 > 题目详情
13.函数f(x)=ex-x的单调递增区间为(0,+∞).

分析 求出函数的导数,由导数大于0,结合指数函数的单调性,解不等式即可得到所求增区间.

解答 解:函数f(x)=ex-x的导数为f′(x)=ex-1,
由f′(x)>0,即ex-1>0,ex>1=e0
解得x>0,
故答案为:(0,+∞).

点评 本题考查导数的运用:求单调区间,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知f(x)在R上是奇函数且满足f(x+4)=f(x),若x∈(0,2)时,f(x)=2x2,则f(11)的值为(  )
A.-2B.2C.-98D.98

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知△ABC的三条边长分别为3、2、4,则△ABC的面积为$\frac{3\sqrt{15}}{4}$,内切圆半径r=$\frac{\sqrt{15}}{6}$,外接圆半径为$\frac{8\sqrt{15}}{15}$,三条边上的中线长为$\frac{\sqrt{31}}{2}$;$\frac{\sqrt{46}}{2}$;$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD是正方形,△PAB与△PAD均是以A为直角顶点的等腰直角三角形,点F是PB的中点,点E是边BC上的任意一点.
(1)求证:AF⊥EF.
(2)若PA=2,求三棱锥P-ADF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若底面为正三角形的几何体的三视图如图所示,则几何体的侧面积为(  )
A.$12\sqrt{3}$B.$36\sqrt{3}$C.$27\sqrt{3}$D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的函数f(x)满足:f(2)=1,且对于任意的x∈R,都有$f'(x)<\frac{1}{10}$,则不等式$f({x^2})>\frac{{{x^2}+8}}{10}$的解集为(-$\sqrt{2}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.数列{an}中,数列{an}的通项公式${a_n}=\frac{1}{n(n+1)}$,则该数列的前9项之和等于$\frac{9}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知{an}为等差数列,a2+a6=10,则a4等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,已知AB=$\sqrt{2}$AC,∠B=30°,则∠A=(  )
A.45°B.15°C.45°或135°D.15°或105°

查看答案和解析>>

同步练习册答案