精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱柱中,底面为菱形,.

1)证明:平面平面

2)若是等边三角形,求二面角的余弦值.

【答案】1)证明见解析(2

【解析】

1)根据面面垂直的判定定理可知,只需证明平面即可.

为菱形可得,连接的交点

由等腰三角形性质可得,即能证得平面

2)由题意知,平面,可建立空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,再分别求出平面的法向量,平面的法向量,即可根据向量法求出二面角的余弦值.

1)如图,设相交于点,连接

为菱形,故的中点.

,故.

平面平面,且

平面,又平面

所以平面平面.

2)由是等边三角形,可得,故平面

所以两两垂直.如图以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.

不妨设,则

为平面的法向量,

可取

为平面的法向量,

可取

所以.

所以二面角的余弦值为0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从27日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆两点,直线分别交直线两点.

1)求椭圆的方程;

2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

求函数处的切线方程;

处导数相等,证明:.

若对于任意,直线与函数图象都有唯一公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是函数的导数.

1)若,证明在区间上没有零点;

2)在恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:函数是偶函数;

(2)设求关于的函数时的值域的表达式;

(3)若关于的不等式时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为多面体,平面与平面垂直,点在线段上, 都是正三角形.

(1)证明:直线∥面

(2)在线段上是否存在一点,使得二面角的余弦值是,若不存在请说明理由,若存在请求出点所在的位置。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,的中点,沿折起,使得点到点位置,且的中点,上的动点(与点不重合).

)证明:平面平面垂直;

)是否存在点,使得二面角的余弦值?若存在,确定点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.其中是自然对数的底数.

1)求函数在点处的切线方程;

2)若不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案