精英家教网 > 高中数学 > 题目详情
11.若函数f(x)=$\left\{\begin{array}{l}{{3}^{x}+1(x≥1)}\\{\frac{x-4}{x-2}(x<1)}\end{array}\right.$,则f-1(x)=$\left\{\begin{array}{l}\frac{2x-4}{x-1},1<x<3\\{log}_{3}(x-1),x≥4\end{array}\right.$.

分析 根据分段函数分段处理的原则,分别求出两段函数函数的反函数,再化为分段函数的形式,可得答案.

解答 解:当x≥1时,f(x)=3x+1≥4,
此时f-1(x)=log3(x-1),x≥4,
当x<1时,f(x)=$\frac{x-4}{x-2}$∈(1,3),
此时f-1(x)=$\frac{2x-4}{x-1}$,1<x<3,
综上所述,f-1(x)=$\left\{\begin{array}{l}\frac{2x-4}{x-1},1<x<3\\{log}_{3}(x-1),x≥4\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}\frac{2x-4}{x-1},1<x<3\\{log}_{3}(x-1),x≥4\end{array}\right.$

点评 本题考查的知识点是分段函数的应用,反函数,熟练掌握反函数的求解过程与要点,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.求函数f(x)=x3-3x+3在区间[-2,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为A,P($\frac{4}{3}$,$\frac{b}{3}$)是C上的一点,以AP为直径的圆经过椭圆C的右焦点F.
(1)求椭圆C的方程;
(2)设过点M(2,0)的动直线l与椭圆C相交于D、E两点,求△ODE面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知△ABC中,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,$\overrightarrow{AB}$=$\overrightarrow{c}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=$\sqrt{3}$,则$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$$•\overrightarrow{c}$+$\overrightarrow{c}$$•\overrightarrow{a}$=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知函数f(x)=$\frac{1}{2}$x-$\frac{1}{4}$sinx-$\frac{\sqrt{3}}{4}$cosx的图象在点A(x0,f(x0))处的切线斜率为$\frac{1}{2}$,求tanx0的值.
(2)对于正整数n,设曲线y=xn(1-x)在x=2处的切线与y轴交点的纵坐标为an,求数列{$\frac{{a}_{n}}{n+1}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义函数f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{-1,x∉Q}\end{array}\right.$,则f(f(2016+π))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD相交于点O,PO⊥平面ABCD,PB⊥平面ABCD所成的角为60°.
(1)求四棱锥P-ABCD的体积;
(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值;
(3)求二面角C-PB-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解不等式loga(x2-x-2)<loga(2x2-7x+3)(0<a<1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在极坐标系中,已知直线pcosθ+psinθ+a=0与圆p=2cosθ相切,求实数a的值.

查看答案和解析>>

同步练习册答案