分析 根据分段函数分段处理的原则,分别求出两段函数函数的反函数,再化为分段函数的形式,可得答案.
解答 解:当x≥1时,f(x)=3x+1≥4,
此时f-1(x)=log3(x-1),x≥4,
当x<1时,f(x)=$\frac{x-4}{x-2}$∈(1,3),
此时f-1(x)=$\frac{2x-4}{x-1}$,1<x<3,
综上所述,f-1(x)=$\left\{\begin{array}{l}\frac{2x-4}{x-1},1<x<3\\{log}_{3}(x-1),x≥4\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}\frac{2x-4}{x-1},1<x<3\\{log}_{3}(x-1),x≥4\end{array}\right.$
点评 本题考查的知识点是分段函数的应用,反函数,熟练掌握反函数的求解过程与要点,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com