【题目】设函数(),,
(Ⅰ) 试求曲线在点处的切线l与曲线的公共点个数;(Ⅱ) 若函数有两个极值点,求实数a的取值范围.
(附:当,x趋近于0时, 趋向于)
【答案】(1)两个公共点;(2).
【解析】试题分析:(1)计算出及,根据点斜式可得切线方程,将切线方程与联立可得方程,设,对其求导,可得其在内的单调性,结合, ,可得零点个数;(2)题意等价于在至少有两不同根,当时, 是的根,根据图象的交点可知有一个零点,除去同根;当显然不合题意;当时,题意等价于在至少有两不同根,对其求导判断单调性,考虑极值与两端的极限值可得结果.
试题解析:(1)∵, ,
切线的斜率为,
∴切线的方程为,即,
联立,得;
设,则,
由及,得或,
∴在和上单调递增,可知在上单调递减,
又, ,所以, ,
∴方程有两个根:1和,从而切线与曲线有两个公共点.
(2)由题意知在至少有两不同根,
设,
①当时, 是的根,
由与()恰有一个公共点,可知恰有一根,
由得,不合题意,
∴当且时,检验可知和是的两个极值点;
②当时, 在仅一根,所以不合题意;--9分
③当时,需在至少有两不同根,
由,得,所以在上单调递增,
可知在上单调递减,
因为, 趋近于0时, 趋向于,且时, ,
由题意知,需,即,解得,
∴.
综上知, .
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=4n,数列{bn}满足b1=-3,
bn+1=bn+(2n-3)(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)若cn=,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
已知直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为。
(Ⅰ)求直线l以及曲线C的极坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求△PAB的面积。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修44:坐标系与参数方程
在直角坐标系中,已知直线l1: (, ),抛物线C: (t为参数).以原点为极点, 轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求直线l1 和抛物线C的极坐标方程;
(Ⅱ)若直线l1 和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2,l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)作出函数f(x)的图象,并指出其单调区间.(不需要严格证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系, 点的极坐标为,曲线的参数方程为(为参数).
(1)写出点的直角坐标及曲线的直角坐标方程;
(2)若为曲线上的动点,求的中点到直线: 的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com