精英家教网 > 高中数学 > 题目详情
4.已知集合A={x|2≤x≤8},B={x|1<x<6},U=R.
求A∪B,A∩B,(∁UA)∩B,∁U(A∪B).

分析 直接利用交、并、补集的混合运算得答案.

解答 解:∵A={x|2≤x≤8},B={x|1<x<6},U=R.
∴A∪B={x|1<x≤8},A∩B={x|2≤x<6},
UA={x|x<2,或x>8},(∁UA)∩B={x|1<x<2},
U(A∪B)={x|x≤1或x>8}.

点评 本题考查交、并、补集的混合运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx,g(x)=f(x)+ax2-3x,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.
(1)求a的值;
(2)求函数g(x)的极值;
(3)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2),(x1<x2),证明$\frac{1}{{x}_{2}}$<k<$\frac{1}{{x}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设双曲线的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,其左,右焦点分别为F1,F2,若双曲线右支上一点P满足∠F1PF2=$\frac{π}{3}$,${S}_{△P{F}_{1}{F}_{2}}$=$3\sqrt{3}{a^2}$,则该双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sinx+$\sqrt{3}$cosx.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2},(x≤1)}\\{x+1,(x>1)}\end{array}}\right.$,则f(f(-2))=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设F是抛物线C:y2=4x的焦点,过F的直线l交抛物线C于A,B两点,当|AB|=6时,以AB为直径的圆与y轴相交所得弦长是2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题
①f(x1+x2)=f(x1)•f(x2
②f(x1•x2)=f(x1)+f(x2
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$
④$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$
⑤曲线g(x)=x2与曲线f(x)=2x有三个公共点.
其中正确的命题序号是①③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,四边形ABCD为菱形,四边形CEFB为正方形,平面ABCD⊥平面CEFB,CE=1,∠BCD=60°,若二面角D-CE-F的大小为α,异面直线BC与AE所成角的大小为β,则(  )
A.tanα=$\sqrt{3}$,tanβ=$\frac{\sqrt{7}}{3}$B.tanα=$\frac{\sqrt{7}}{3}$,tanβ=$\sqrt{3}$
C.tanα=$\frac{2\sqrt{3}}{3}$,tanβ=$\frac{\sqrt{6}}{3}$D.tanα=$\frac{\sqrt{7}}{3}$,tanβ=$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD=1,PD⊥面ABCD,E为棱BC的中点.
(1)求四棱锥P-ABCD的体积;
(2)求异面直线PB和DE所成角的余弦值.

查看答案和解析>>

同步练习册答案