精英家教网 > 高中数学 > 题目详情
如图,在空间四边形中,分别是上的点,分别是上的点,且,求证:三条直线相交于同一点.
证明过程详见试题解析.

试题分析:要证明三线共点,先证明两条直线,再证明第三条直线也经过点即可.
试题解析:连接EF、GH,因为
所以               2分
所以共面,且不平行,             3分
不妨设                                   4分
         6分
           8分
又因为             10分[
所以三条直线相交于同一点O.           12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱CC1的中点。

(1)求证:BD⊥AE;
(2)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥SABC中,平面SAB⊥平面SBCABBCASAB.过AAFSB,垂足为F,点EG分别是棱SASC的中点.

求证:(1)平面EFG∥平面ABC;(2)BCSA.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,

(1)求证:;
(2)求直线与直线BD所成的角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是(  )
A.α⊥β,且m?αB.m∥n,且n⊥β
C.α⊥β,且m∥αD.m⊥n,且n∥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面和直线,给出条件:
;②;③;④;⑤
(1)当满足条件       时,有;(2)当满足条件      时,有

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是一正方体的表面展开图,B、N、Q都是所在棱的中点,则在原正方体中,①AB与CD相交;②MN∥PQ;③AB∥PE;④MN与CD异面;⑤MN∥平面PQC.
其中真命题的是________(填序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是(  )
A.AB∥CD
B.AB与CD异面
C.AB与CD相交
D.AB∥CD或AB与CD异面或AB与CD相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在长方形中,的中点,为线段(端点除外)上一动点,现将沿折起,使平面平面.在平面内过点为垂足,设,则的取值范围是________

查看答案和解析>>

同步练习册答案