精英家教网 > 高中数学 > 题目详情
已知x>1,y>2,x+y=15,则函数z=(x-1)(y-2)的最大值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:由题意结合基本不等式可得z=(x-1)(y-2)≤(
x-1+y-2
2
)2
,代值计算可得.
解答: 解:∵x>1,y>2,
∴x-1>0,y-2>0,
∴z=(x-1)(y-2)≤(
x-1+y-2
2
)2

∵x+y=15,∴(
x-1+y-2
2
)2
=36
当且仅当x-1=y-2即x=7且y=8是取最大值36,
故答案为:36
点评:本题考查基本不等式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=logax(a>0,且a≠1)的图象如图所示,函数y=g(x)是函数y=f(x)的反函数,则函数y=g(x)的解析式为(  )
A、g(x)=2x
B、g(x)=(
1
2
)x
C、g(x)=log
1
2
x
D、g(x)=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b∈R,则下列命题正确的是(  )
A、若a>b,则a2>b2
B、若a>b,则
1
a
1
b
C、若a>|b|,则a2>b2
D、若ac>bc,则a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
3
4
x4-x3的极值点的个数为(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=4sin(2x+
π
3
),(x∈R)有下列命题:
①y=f(x)是以2π为最小正周期的周期函数; 
②y=f(x)可改写为y=4cos(2x-
π
6
);
③y=f(x)的图象关于点(-
π
6
,0)对称;   
④y=f(x)的图象关于直线x=-
12
对称;
⑤y=|f(x)|是以π为最小正周期的周期函数.
其中正确的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
x2-1
(a>0).
(1)判断并证明函数f(x)的奇偶性;
(2)判断函数f(x)的单调性,并用函数的单调性定义给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=5sinxcosx-5
3
cos2x+
5
3
2

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调递增区间,并求出f(x)在[
π
3
6
]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinx+cosx.
(Ⅰ)求函数g(x)=f(x)•f′(x)+[f(x)]2的周期和对称轴;
(Ⅱ)若h(x)=(f(x)-sinx)cos(x-
π
3
),求使h(x)>
1+
3
4
成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义◇的运算为a◇b=
ba≥b
ab>a
,则f(x)=3x◇3-x的值域为(  )
A、(0,1]
B、[1,+∞)
C、(0,+∞)
D、(-∞,+∞)

查看答案和解析>>

同步练习册答案