精英家教网 > 高中数学 > 题目详情

已知椭圆,过点且离心率为.

(1)求椭圆的方程;
(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.

(1);(2)存在,

解析试题分析:(1)由离心率,所以①,再把点代入椭圆中得:②,最后③,由①②③三式求出,即可写出椭圆方程;
假设存在,设,则直线的方程, 可得, 并设定点,由,直线与直线斜率之积为-1,即 ,化简得 ,又因为 ,得,可求出,继而得到定点点坐标.
(1)由题意得:
 得
所以,椭圆方程为
(2)设,则直线的方程
可得,       
设定点
,即 ,  
                       
又因为,所以
进而求得,故定点为.           
考点:椭圆方程;直线与圆锥曲线的位置关系;是否存在问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知直线 和椭圆,椭圆C的离心率为,连结椭圆的四个顶点形成四边形的面积为.
(1)求椭圆C的方程;
(2)若直线与椭圆C有两个不同的交点,求实数m的取值范围;
(3)当时,设直线与y轴的交点为P,M为椭圆C上的动点,求线段PM长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆C1=1(a>b>0)的左、右焦点分别为为恰是抛物线C2的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
(1)求C1的方程;
(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的最小距离为,离心率.
(1)求椭圆的方程;
(2)若直线两点,点,问是否存在,使?若存在求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.
(1)求曲线的方程;
(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长为,离心率为分别为其左右焦点.一动圆过点,且与直线相切.
(1)(ⅰ)求椭圆的方程;(ⅱ)求动圆圆心轨迹的方程;
(2)在曲线上有四个不同的点,满足共线,共线,且,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦.当直线斜率为0时,

(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理)已知点是平面直角坐标系上的一个动点,点到直线的距离等于点到点的距离的2倍.记动点的轨迹为曲线.
(1)求曲线的方程;
(2)斜率为的直线与曲线交于两个不同点,若直线不过点,设直线的斜率分别为,求的数值;
(3)试问:是否存在一个定圆,与以动点为圆心,以为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,动点与两定点构成,且,设动点的轨迹为

(1)求轨迹的方程;
(2)设直线轴相交于点,与轨迹相交于点,且,求的取值范围.

查看答案和解析>>

同步练习册答案