精英家教网 > 高中数学 > 题目详情
2.函数f(x)=$sin({2x+\frac{π}{6}})$的最小正周期和振幅分别是(  )
A.π,1B.π,2C.2π,1D.2π,2

分析 根据函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,振幅为A,得出结论.

解答 解:函数f(x)=$sin({2x+\frac{π}{6}})$的最小正周期为$\frac{2π}{2}$=π,振幅是1,
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的周期和振幅,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.计算($lg\frac{1}{5}-lg2$)÷100${\;}^{-\frac{1}{2}}$+${({\frac{1}{3}})^{{{log}_3}\frac{1}{10}}}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.连锁经营公司所属5个零售店某月的销售额利润资料如表:
商品名称ABCDE
销售额x/千万元35679
利润额y/百万元23345
(1)画出销售额和利润额的散点图
(2)若销售额和利润额具有相关关系,试计算利润额y对销售额x的回归直线方程.
(3)估计要达到1000万元的利润额,销售额约为多少万元.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图直三棱柱ABC-A′B′C′的侧棱长为3,AB⊥BC,且AB=BC=3,点E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:无论E在何处,总有CB′⊥C′E;
(2)当三棱锥B-EB′F的体积取得最大值时,求AE的长度.
(3)在(2)的条件下,求异面直线A′F与AC所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在直角坐标系中,已知M(2,1)和直线L:x-y=0,试在直线L上找一点P,在X轴上找一点Q,使三角形MPQ的周长最小,最小值为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.计算$\frac{\sqrt{x}•\root{3}{{x}^{4}}}{x•\root{6}{x}}$的值为(  )
A.${x}^{\frac{2}{3}}$B.${x}^{-\frac{2}{3}}$C.${x}^{\frac{1}{3}}$D.${x}^{-\frac{1}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,则g(g($\frac{1}{3}$))=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=$\frac{1}{4}$
(1)求△ABC的周长;
(2)求sin(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)0.5+(0.2)-2×$\frac{2}{25}$-(0.081)0
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

同步练习册答案