精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数上的最大值;

2)若函数在区间上有零点,求的取值范围;

3)求证:.

【答案】1 2 3)证明见解析

【解析】

1)对求导得,判断上的单调性即可求得上的最大值;

2)将在区间上有零点转化为有解,分离参数后构造新的函数,利用导数求得的范围,再结合,确定的范围;

3)由(1)知,,利用对数的运算性质将化成,而,原不等式右侧可利用放缩和裂项相消求得,又,原不等式左侧也可得证,从而证明不等式成立.

1

上单调递减,

时,

上单调递减,

2)函数上有零点

有解上有解且

因为

,解得

上单调递增,上单调递减,

,故

,得

综上可得,.

3)证明:由(1)知,

所以时,

所以

所以

又因为

所以

故结论成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,多面体中,四边形为钝角的平行四边形,四边形为直角梯形,.

1)求证:

2)若点到平面的距离为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,已知ban2n(b1)Sn.

(1)证明:当b2时,{ann·2n1}是等比数列;

(2){an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)当为何值时,直线是曲线的切线;

(2)若不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家提出的中国剩余定理又称孙子定理,它在世界数学史上具有光辉的一页,堪称数学史上名垂百世的成就,而且一直启发和指引着历代数学家们.定理涉及的是数的整除问题,其数学思想在近代数学、当代密码学研究及日常生活都有着广泛应用,为世界数学的发展做出了巨大贡献,现有这样一个整除问题:将120192019个整数中能被5除余1且被7除余2的数按从小到大的顺序排成一列,构成数列,那么此数列的项数为(

A.56B.57C.58D.59

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为正方形,.

(1)证明:平面平面.

(2)若平面,二面角,三棱锥的外接球的球心为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示是一个上下底面均是边长为2的正三角形的直三棱柱,且该直三棱柱的高为4,DAB的中点,ECC1的中点.

1)求DE与平面ABC夹角的正弦值;

2)求二面角AA1DE的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为),M为该曲线上的任意一点.

1)当时,求M点的极坐标;

2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学棋艺协会定期举办“以棋会友”的竞赛活动,分别包括“中国象棋”、“围棋”、“五子棋”、“国际象棋”四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选“中国象棋”,不选“国际象棋”,乙、丙两位同学从四种比赛中任选两种参与.

1)求甲、乙同时参加围棋比赛的概率;

2)记甲、乙、丙三人中选择“中国象棋”比赛的人数为,求的分布列及期望.

查看答案和解析>>

同步练习册答案