精英家教网 > 高中数学 > 题目详情

如果:(1)a, b, c, d都属于{1, 2, 3, 4}

  (2)a≠b, b≠c, c≠d, d≠a

  (3)a是a, b, c, d中的最小数

 那么,可以组成的不同的四位数abcd的个数是________.
46个。解析:abcd中恰有2个不同数字时,能组成C=6个不同的数。abcd中恰有3个不同数字时,能组成=16个不同数。abcd中恰有4个不同数字时,能组成A=24个不同数,所以符合要求的数共有6+16+24=46个
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,且当-1≤x≤0时,f(x)=2x3+5ax2+4a2x+b.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当1<a≤3时,求函数f(x)在(0,1]上的最大值g(a);
(Ⅲ)如果对满足1<a≤3的一切实数a,函数f(x)在(0,1]上恒有f(x)≤0,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出4个命题:
(1)设椭圆长轴长度为2a(a>0),椭圆上的一点P到一个焦点的距离是
2
3
a
,P到一条准线的距离是
8
3
a
,则此椭圆的离心率为
1
4

(2)若椭圆
x2
a2
+
y2
b2
=1
(a≠b,且a,b为正的常数)的准线上任意一点到两焦点的距离分别为d1,d2,则|d12-d22|为定值.
(3)如果平面内动点M到定直线l的距离与M到定点F的距离之比大于1,那么动点M的轨迹是双曲线.
(4)过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线准线上的射影分别为A1、B1,则FA1⊥FB1
其中正确命题的序号依次是
(2)(4)
(2)(4)
.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

如果:(1)a,b,c,d都属于{1,2,3,4};
(2)a≠b,b≠c,c≠d,d≠a;
(3)a是a,b,c,d中的最小值,
那么,可以组成的不同的四位数
.
abcd
的个数是
28
28

查看答案和解析>>

同步练习册答案