精英家教网 > 高中数学 > 题目详情

【题目】以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:

房屋面积(

115

110

80

135

105

销售价格(万元)

24.8

21.6

18.4

29.2

22

(1)画出数据对应的散点图;

(2)求线性回归方程,并在散点图中加上回归直线;

(3)据(2)的结果估计当房屋面积为150时的销售价格.附:回归直线的斜率和截距的最小二乘法估计公式分别为:

【答案】(1)答案见解析;(2) ,直线见解析;(3) (万元)

【解析】试题分析:

(1)利用题中所给的数据绘制散点图即可;

(2)利用回归直线的计算公式可得回归方程为.然后画出回归直线即可;

(3)结合(2)的结论估计当房屋面积为150时的销售价格是万元.

试题解析:

(1)数据对应的散点图如图所示:

(2)

设所求回归直线方程为,则 ,故所求回归直线方程为.

(3)据(2),当时,销售价格的估计值为: (万元)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点P在曲线 上,点Q在曲线y=ln(2x)上,则|PQ|最小值为(
A.1﹣ln2
B.
C.1+ln2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2x﹣4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(﹣x)=﹣f(x)的x的值;若不是,请说明理由;
(2)若f(x)=2x+m是定义在区间[﹣1,1]上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax,(a∈R)
(1)若函数f(x)在点区间[e,+∞]处上为增函数,求a的取值范围;
(2)若函数f(x)的图象在点x=e(e为自然对数的底数)处的切线斜率为3,且k∈Z时,不等式 k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(3)n>m≥4时,证明:(mnnm>(nmmn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0, )上的函数f(x)的导函数为f′(x),且对于任意的x∈(0, ),都有f′(x)sinx<f(x)cosx,则(
A. f( )> f(
B.f( )>f(1)
C. f( )<f(
D. f( )<f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班为了提高学生学习英语的兴趣,在班内举行英语写、说、唱综合能力比赛,比赛分为预赛和决赛2个阶段,预赛为笔试,决赛为说英语、唱英语歌曲,将所有参加笔试的同学(成绩得分为整数,满分100分)进行统计,得到频率分布直方图,其中后三个矩形高度之比依次为4:2:1,落在的人数为12人.

(Ⅰ)求此班级人数;

(Ⅱ)按规定预赛成绩不低于90分的选手参加决赛,已知甲乙两位选手已经取得决赛资格,参加决赛的选手按抽签方式决定出场顺序.

(i)甲不排在第一位乙不排在最后一位的概率;

(ii)记甲乙二人排在前三位的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:三棱锥中,侧面垂直底面, 是底面最长的边;图1是三棱锥的三视图,其中的侧视图和俯视图均为直角三角形;图2是用斜二测画法画出的三棱锥的直观图的一部分,其中点平面内.

Ⅰ)请在图2中将三棱锥的直观图补充完整并指出三棱锥的哪些面是直角三角形;

Ⅱ)设二面角的大小为,求的值;

求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为.

(1)求椭圆的方程;

(2)如图,以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点分别为,若直线与椭圆交于不同的两点,求的取值范围.

查看答案和解析>>

同步练习册答案