精英家教网 > 高中数学 > 题目详情

【题目】=2sinωx+φ),x∈R,其中ω0﹣πφ≤π.若函数fx)的最小正周期为,且当x=时,fx)取得最大值,则( )

A. fx)在区间[﹣2π0]上是增函数B. fx)在区间[﹣3π﹣π]上是增函数

C. fx)在区间[3π5π]上是减函数D. fx)在区间[4π6π]上是减函数

【答案】A

【解析】

试题由函数fx)的最小正周期为,根据周期公式可得ω=,且当x=时,fx)取得最大值,代入可得,2sinφ=2,结合已知﹣πφ≤π可得φ=可得,分别求出函数的单调增区间和减区间,结合选项验证即可

解:函数fx)的最小正周期为,根据周期公式可得ω=

∴fx=2sinφ),

x=时,fx)取得最大值,∴2sinφ=2

∵﹣πφ≤π∴φ=

可得函数的单调增区间:

可得函数的单调减区间:

结合选项可知A正确,

故选A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为1的正方形,垂直于底面.

1)求平面与平面所成二面角的大小;

2)设棱的中点为,求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面推理过程中使用了类比推理方法其中推理正确的个数是

①“数轴上两点间距离公式为平面上两点间距离公式为”,类比推出“空间内两点间的距离公式为“;

②“代数运算中的完全平方公式”类比推出“向量中的运算仍成立“;

③“平面内两不重合的直线不平行就相交”类比到空间“空间内两不重合的直线不平行就相交“也成立;

④“圆上点处的切线方程为”,类比推出“椭圆 上点处的切线方程为”.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】207年8月8日晚我国四川九赛沟县发生了7.0级地震为了解与掌握一些基本的地震安全防护知识,某小学在9月份开学初对全校学生进行了为期一周的知识讲座,事后并进行了测试(满分100分),根据测试成绩评定为“合格”(60分以上包含60分)、“不合格”两个等级,同时对相应等级进行量化:“合格”定为10分,“不合格”定为5分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:

等级

不合格

合格

得分

频数

6

24

(1)求的值;

(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈,现再从这10人中任选4人记所选4人的量化总分为的分布列及数学期望

(3)设函数(其中表示的方差)是评估安全教育方案成效的一种模拟函数.当时,认定教育方案是有效的;否则认定教育方案应需调整,试以此函数为参考依据.在(2)的条件下,判断该校是否应调整安全教育方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称具有性质.下列函数中具有性质的是( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱如图所示,并要求正四棱柱的高是正四棱锥的高的4倍.

1则仓库的容积是多少?

2若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参数方程为 (为参数).

(Ⅰ)求曲线上的点到直线的距离的最大值;

(Ⅱ)过点与直线平行的直线与曲线 交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地植被面积 (公顷)与当地气温下降的度数)之间有如下的对应数据:

(公顷)

20

40

50

60

80

3

4

4

4

5

(1)请用最小二乘法求出关于的线性回归方程

(2)根据(1)中所求线性回归方程,如果植被面积为200公顷,那么下降的气温大约是多少

参考公式:用最小二乘法求线性回归方程系数公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年11月、12月全国大范围流感爆发,为研究昼夜温差大小与患感冒人数多少之间的关系,一兴趣小组抄录了某医院11月到12月间的连续6个星期的昼夜温差情况与因患感冒而就诊的人数得到如下资料:

日期

第一周

第二周

第三周

第四周

第五周

第六周

昼夜温差x(°C)

10

11

13

12

8

6

就诊人数y(个)

22

25

29

26

16

12

该兴趣小组确定的研究方案是先从这六组数据中选取2组用剩下的4组数据求线性回归方程再用被选取的2组数据进行检验

(Ⅰ)求选取的2组数据恰好是相邻两个星期的概率;

(Ⅱ)若选取的是第一周与第六周的两组数据请根据第二周到第五周的4组数据,求出关于的线性回归方程

(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考公式: )

参考数据: 1092, 498

查看答案和解析>>

同步练习册答案