精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,°,平面平面分别为中点.

(1)求证:平面;

(2)求二面的大小.

【答案】(1)详见解析(2)

【解析】

(1)由三角形的中位线定理可得,进而由线面平行的判定定理,即可正面的结论;

(2)以D为原点建立空间空间直角坐标系,分别求出平面PBE的法向量和平面PAB的法向量,代入向量的夹角公式,即可求解二面角的大小.

(1)在中,D、E分别为AB、AC的中点,

所以,又由平面平面

所以平面

(2)连接PD,因为PA=PB,EAB的中点,所以

因为,所以

D为原点建立空间直角坐标系,如图所示,

,所以

所以,

设平面PBE的法向量为

,即,令,得

因为平面,所以平面PAB的法向量为

设二面角的大小为

所以,所以

即二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数图象相邻两条对称轴的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称则函数的图象( )

A. 关于直线对称 B. 关于直线对称

C. 关于点对称 D. 关于点对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)若,求曲线在点处的切线方程;

2)求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放四十年以来,北京市居民生活发生了翻天覆地的变化.随着经济快速增长、居民收入稳步提升,消费结构逐步优化升级,生活品质显著增强,美好生活蓝图正在快速构建.北京市城镇居民人均消费支出从1998年的7 500元增长到2017年的40 000元.1998年与2017年北京市城镇居民消费结构对比如下图所示:

1998年北京市城镇居民消费结构 2017年北京市城镇居民消费结构

则下列叙述中不正确的是( )

A. 2017年北京市城镇居民食品支出占比同1998年相比大幅度降低

B. 2017年北京市城镇居民人均教育文化娱乐类支出同1998年相比有所减少

C. 2017年北京市城镇居民医疗保健支出占比同1998年相比提高约

D. 2017年北京市城镇居民人均交通和通信类支出突破5 000元,大约是1998年的14倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为且过点

(1)求椭圆的标准方程

(2) 设直线轴交于点,点关于直线的对称点在椭圆上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为节能环保,推进新能源汽车推广和应用,对购买纯电动汽车的用户进行财政补贴. 某地补贴政策如下(表示纯电续航里程):

三个纯电动汽车4s店分别销售不同品牌的纯电动汽车,在一个月内它们的销售情况如下: (每位客户只能购买一辆纯电动汽车

(Ⅰ)从上述购买纯电动汽车的客户中随机选一人,求此人购买的是店纯电动汽车且享受补贴不低于3.5万元的概率;

(Ⅱ)从购买店纯电动汽车的客户中按分层抽样的方法随机选6人,再从这6人中随机选2人,进行使用满意度的调查,求这两人享受补贴恰好相同的概率;

(Ⅲ)分别用表示购买店和店纯电动汽车客户享受补贴的平均值,比较的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A10海里的C处,并测得渔船正沿方位角105°的方向,以9海里/时的速度向某小岛B靠拢,我海军舰艇立即以21海里/时的速度前去营救,恰在小岛B处追上渔船.

1)试问舰艇应按照怎样的航向前进?

2)求出舰艇靠近渔船所用的时间?

(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种产品,根据经验,其次品率Q与日产量x(万件)之间满足关系, ,已知每生产1万件合格的产品盈利2万元,但每生产1万件次品将亏损1万元(注:次品率=次品数/生产量, 如表示每生产10件产品,有1件次品,其余为合格品).

1)试将生产这种产品每天的盈利额(万元)表示为日产量x(万件)的函数;

2)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A是椭圆的左顶点,点P,Q在椭圆上且均在x轴上方.

(1)若直线AP与OP垂直,求点P的坐标;

(2)若直线AP,AQ的斜率之积为,求直线PQ的斜率的取值范围.

查看答案和解析>>

同步练习册答案