精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥的底面为边长为的菱形,中点,连接.

(Ⅰ)求证:平面平面

(Ⅱ)若平面平面,且二面角的余弦值为,求四棱锥的体积.

【答案】(Ⅰ)见证明;(Ⅱ)2.

【解析】

(Ⅰ)连接,在菱形中可得,又,进而可得平面,于是得到平面,所以可得结论成立.(Ⅱ)建立空间直角坐标系,设,二面角的余弦值为可得,即,然后根据椎体的体积公式求解即可.

(Ⅰ)连接

∵菱形中,

为等边三角形,又中点,

,则

平面

平面

平面

∴平面平面.

(Ⅱ)∵平面 平面,且交线为平面,

为原点,所在直线分别为轴,轴,轴建立空间直角坐标系

,则

设平面的一个法向量为

,即,可取

又平面的法向量可取

由题意得

解得,即

又菱形的面积

∴四棱锥的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面且边长为的菱形,侧面为正三角形,其所在平面垂直于底面,若的中点,的中点.

1)求证:平面

2)求证:

3)在棱上是否存在一点,使平面平面,若存在,确定点的位置;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于概率和统计的几种说法:①10名工人某天生产同一种零件,生产的件数分别是15171410151717161412,设其平均数为,中位数为,众数为,则的大小关系为;②样本4210-2的标准差是2;③在面积为内任选一点,则随机事件的面积小于的概率为;④从写有0129的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率是.其中正确说法的序号有______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】画糖是一种以糖为材料在石板上进行造型的民间艺术,常见于公园与旅游景点.某师傅制作了一种新造型糖画,为了合理定价,先进行试销售,其单价x(元)与销量y(个)相关数据如表:

单价x(元)

8.5

9

9.5

10

10.5

销量y(个)

12

11

9

7

6

1)已知销量y与单价x具有线性相关关系,求y关于x的线性回归方程;

2)若该新造型糖画每个的成本为5.7元,要使得进入售卖时利润最大,请利用所求出的线性回归方程确定单价应该定为多少元?(结果保留到整数)

参考公式:线性回归方程yx中斜率和截距最小二乘法估计计算公式:.参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱长为的正方形中,点分别是边上的点,且,将沿折起,使得两点重合于点上,设交于点,过点点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形为矩形,平面,连接,则下列各组向量中,数量积不为零的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.

1)求椭圆的方程;

2)设点在椭圆上,且异于椭圆的上、下顶点,点为直线轴的交点,点轴的负半轴上.若为原点),且,求证:直线的斜率与直线MN的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为,离心率为上的一个动点.当的上顶点时,的面积为

1)求的方程;

2)设斜率存在的直线的另一个交点为.若存在点,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】湖北省2019年新高考方案公布,实行“”模式,即“3”是指语文、数学、外语必考,“1”是指物理、历史两科中选考一门,“2”是指生物、化学、地理、政治四科中选考两门,在所有选科组合中某学生选择考历史和化学的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案