精英家教网 > 高中数学 > 题目详情
7.已知函数$f(x)=blnx-\frac{x^2}{{2{e^2}}}+a$(其中a∈R,无理数e=2.71828…).当x=e时,函数f(x)有极大值$\frac{1}{2}$.
(Ⅰ)求实数a,b的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)任取x1,${x_2}∈[{e,{e^2}}]$,证明:|f(x1)-f(x2)|<3.

分析 (Ⅰ)求出f(x)的导数,由题意可得f(e)=$\frac{1}{2}$,f′(e)=0,解方程可得a,b;
(Ⅱ)求出f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间;
(Ⅲ)求出f(x)的导数,求得f(x)在[e,e2]上的最值,欲证明|f(x1)-f(x2)|<3,只需证明|f(x)max-f(x)min|<3,即可.

解答 解:(Ⅰ)函数$f(x)=blnx-\frac{x^2}{{2{e^2}}}+a$的导数为f′(x)=$\frac{b}{x}$-$\frac{x}{{e}^{2}}$,
由题意知$f′(e)=\frac{b}{e}-\frac{e}{e^2}=0$,$f(e)=blne-\frac{e^2}{{2{e^2}}}+a=\frac{1}{2}$,
解得a=0,b=1;
(Ⅱ)由题可知f(x)=lnx-$\frac{{x}^{2}}{2{e}^{2}}$的定义域为(0,+∞),
又$f′(x)=\frac{1}{x}-\frac{x}{e^2}=\frac{{{e^2}-{x^2}}}{{{e^2}x}}=\frac{(e+x)(e-x)}{{{e^2}x}}$,
由$\frac{(e+x)(e-x)}{{e}^{2}x}$>0,解得0<x<e;
$\frac{(e+x)(e-x)}{{e}^{2}x}$<0,解得x>e.
故函数f(x)的单调增区间为(0,e),单调递减区间为(e,+∞).
(Ⅲ)证明:因为$f(x)=lnx-\frac{x^2}{{2{e^2}}}$,
由(Ⅱ)可知函数f(x)的单调递减区间为(e,+∞),
故f(x)在[e,e2]上单调递减,
∴$f{(x)_{max}}=f(e)=lne-\frac{e^2}{{2{e^2}}}=1-\frac{1}{2}=\frac{1}{2}$,
$f{(x)_{min}}=f({e^2})=ln{e^2}-\frac{e^4}{{2{e^2}}}=2-\frac{e^2}{2}$;
∴$f{(x)_{max}}-f{(x)_{min}}=\frac{1}{2}-(2-\frac{e^2}{2})=\frac{{{e^2}-3}}{2}$,
∴|f(x)max-f(x)min|=$\frac{{e}^{2}-3}{2}$<3①
依题意任取x1,${x_2}∈[{e,{e^2}}]$,
欲证明|f(x1)-f(x2)|<3,
只需证明|f(x)max-f(x)min|<3,
由①可知此式成立,原命题得证.

点评 本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用转化思想,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知A(m,-m+3),B(2,m-1),C(-1,4),直线AC的斜率等于直线BC的斜率的3倍,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PD⊥底面ABCD,AB=2AD,∠ADB=90°,
(1)证明PA⊥BD;
(2)设PD=AD=1,求三棱锥D-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设平面直角坐标系原点与极坐标极点重合,x轴正半轴与极轴重合,若已知曲线C的极坐标方程为ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,点F1、F2为其左、右焦点,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数,t∈R).
(Ⅰ)求曲线C的标准方程和直线l的普通方程;
(Ⅱ)若点P为曲线C上的动点,求点P到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C1:ρ=4cosθ.
(1)在极坐标系中,与曲线C1相切的一条直线方程为B
A.ρcosθ=2   B.ρsinθ=2   C.ρ=4sin(θ+$\frac{π}{3}$)   D.ρ=4sin(θ-$\frac{π}{3}$)
(2)已知曲线C1的极坐标方程为:ρcosθ=3,则曲线C1与C2交点的极坐标为(2$\sqrt{3}$,$\frac{π}{6}$)或(2$\sqrt{3}$,-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.圆C:ρ=-4sinθ上的动点P到直线l:ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$的最短距离为2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{x^2}{4}-{y^2}=1$,过点O(0,0)作直线l与双曲线仅有一个公共点,这样的直线l共有(  )
A.0条B.2条C.4条D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点P(x,y)在不等式组$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$表示的平面区域内运动,则z=x-y的最大值是(  )
A.-1B.-2C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等比数列{an}中,已知a1=2,a2=4,那么a5=(  )
A.4B.8C.16D.32

查看答案和解析>>

同步练习册答案