精英家教网 > 高中数学 > 题目详情

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为(

A. 10000立方尺 B. 11000立方尺

C. 12000立方尺 D. 13000立方尺

【答案】A

【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:

沿上棱两端向底面作垂面,且使垂面与上棱垂直,
则将几何体分成两个四棱锥和1个直三棱柱,
则三棱柱的

四棱锥的体积
由三视图可知两个四棱锥大小相等,立方丈立方尺.
故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数)是奇函数.

1)求实数的值;

2)若,求的取值范围.

3)若,且恒成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,当时,,则不等式的解集为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(),求

1

2)令,求关于的函数关系式,及的取值范围.

3)求函数,()的最大值和最小值;并写出它的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点PQ分别为A1B1BC的中点.

(1)求异面直线BPAC1所成角的余弦值;

(2)求直线CC1与平面AQC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为关于直线的对称点在直线上.

(1)求椭圆的离心率;

(2)若的长轴长为且斜率为的直线交椭圆于两点,问是否存在定点,使得的斜率之和为定值?若存在,求出所有满足条件的点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某保险公司的推销员中随机抽取50名,统计这些推销员某月的月销售额(单位:千元),由统计结果得如图频数分别表:

月销售额

分组

[12.25,14.75)

[14.75,17.25)

[17.25,19.75)

[19.75,22.25)

[22.25,24.75)

频数

4

10

24

8

4

(1)作出这些数据的频率分布直方图;

(2)估计这些推销员的月销售额的平均数(同一组中的数据用该组区间的中点作代表);

(3)根据以上抽样调查数据,公司将推销员的月销售指标确定为17.875千元,试判断是否有60%的职工能够完成该销售指标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1正方体中,点分别为边的中点,将沿所在的直线进行翻折,将沿所在直线进行翻折,在翻折的过程中,下列说法错误的是( )

A. 无论旋转到什么位置,两点都不可能重合

B. 存在某个位置,使得直线与直线所成的角为

C. 存在某个位置,使得直线与直线所成的角为

D. 存在某个位置,使得直线与直线所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥中, 为正三角形, ,底面为平行四边形,平面平面,点是侧棱的中点,平面与棱交于点.

(1)求证:

(2)若,求平面与平面所成二面角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案