精英家教网 > 高中数学 > 题目详情

设函数f(x)=x2-mlnx,g(x)=x2-x+a.
(1)当a=0时,f(x)≥g(x)在(1,+∞),上恒成立,求实数m的取值范围;
(2)当m=2时,若函数h(x)=f(x)-g(x)在[1,3]上恰有两个不同的零点,求实数a的取值范围.

(1)(2)

解析试题分析:(1) 可将问题转化为 时, 恒成立问题。令,先求导,导数大于0得原函数的增区间,导数小于0得原函数的减区间,根据单调性可求最小值。只需 即可。(2)可将问题转化为方程,在上恰有两个相异实根,令。同(1)一样用导数求函数的单调性然后再求其极值和端点处函数值。比较极值和端点处函数值得大小,画函数草图由数形结合分析可知直线应与函数的图像有2个交点。从而可列出关于的方程。
试题解析:
解:(1)由可得             1分
,即,记
上恒成立等价于.       3分
求得
时, ;
时, .
处取得极小值,也是最小值,即,故.
所以,实数的取值范围为                  5分
(2)函数上恰有两个不同的零点
等价于方程,在上恰有两个相异实根.       6分
,则.
时,
时,
上是单调递减函数,在上是单调递增            8分
函数.故

,∴只需
故a的取值范围是.                    10分
考点:1导数研究函数的单调性;2用单调性求最值;3数形结合思想。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(其中).
(1)求函数的单调区间;
(2)若函数上有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求的取值范围;
(3)若对任意,且恒成立,求的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图像与x轴交于两点,且,又的导函数,若正常数满足条件.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处切线为.
(1)求的解析式;
(2)设表示直线的斜率,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处取得极值,求实数的值;
(2)求函数的单调区间;
(3)若上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处取得极值,且在点处的切线斜率为.
⑴求的单调增区间;
⑵若关于的方程在区间上恰有两个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量为常数, 是自然对数的底数),曲线在点处的切线与轴垂直,
(Ⅰ)求的值及的单调区间;
(Ⅱ)已知函数 (为正实数),若对于任意,总存在, 使得,求实数的取值范围.

查看答案和解析>>

同步练习册答案