设函数f(x)=x2-mlnx,g(x)=x2-x+a.
(1)当a=0时,f(x)≥g(x)在(1,+∞),上恒成立,求实数m的取值范围;
(2)当m=2时,若函数h(x)=f(x)-g(x)在[1,3]上恰有两个不同的零点,求实数a的取值范围.
(1)(2)
解析试题分析:(1) 可将问题转化为 时, 恒成立问题。令,先求导,导数大于0得原函数的增区间,导数小于0得原函数的减区间,根据单调性可求最小值。只需 即可。(2)可将问题转化为方程,在上恰有两个相异实根,令。同(1)一样用导数求函数的单调性然后再求其极值和端点处函数值。比较极值和端点处函数值得大小,画函数草图由数形结合分析可知直线应与函数的图像有2个交点。从而可列出关于的方程。
试题解析:
解:(1)由,可得 1分
,即,记,
则在上恒成立等价于. 3分
求得
当时, ;
当时, .
故在处取得极小值,也是最小值,即,故.
所以,实数的取值范围为 5分
(2)函数在上恰有两个不同的零点
等价于方程,在上恰有两个相异实根. 6分
令,则.
当时,;
当时,,
∴在上是单调递减函数,在上是单调递增 8分
函数.故,
又,,
∵,∴只需,
故a的取值范围是. 10分
考点:1导数研究函数的单调性;2用单调性求最值;3数形结合思想。
科目:高中数学 来源: 题型:解答题
已知函数.
(1)当时,求函数在上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图像与x轴交于两点,且,又是的导函数,若正常数满足条件.证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知向量,,(为常数, 是自然对数的底数),曲线在点处的切线与轴垂直,.
(Ⅰ)求的值及的单调区间;
(Ⅱ)已知函数 (为正实数),若对于任意,总存在, 使得,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com