精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;

(2)若AD⊥PB,求证:BD⊥平面PAD.

【答案】1)详见解析;(2)详见解析.

【解析】

试题(1)设 ,由中位线定理证得 平面;(2)由 平面 平面

试题解析:(1)设AC∩BD=H,连接MH,

∵H为平行四边形ABCD对角线的交点,∴H为AC中点,

又∵M为PC中点,∴MH为△PAC中位线,

可得MH∥PA,

MH平面MBD,PA平面MBD,

所以PA∥平面MBD.

(2)∵PD⊥平面ABCD,AD平面ABCD,

∴PD⊥AD,

又∵AD⊥PB,PD∩PB=D,

∴AD⊥平面PDB,结合BD平面PDB,得AD⊥BD

∵PD⊥BD,且PD、AD是平面PAD内的相交直线

∴BD⊥平面PAD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数y=fx),满足f2=0,函数y=fx+1)的图象关于点(-10)中心对称,且对任意的负数x1x2x1x2),恒成立,则不等式fx)<0的解集为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,AsinC

)求B的大小;

)求cosA+cosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究“晚上喝绿茶与失眠”有无关系,调查了100名人士,得到下面的列联表:

失眠

不失眠

合计

晚上喝绿茶

16

40

56

晚上不喝绿茶

5

39

44

合计

21

79

100

由已知数据可以求得:,则根据下面临界值表:

0.050

0.010

0.001

3.841

6.635

10.828

可以做出的结论是( )

A. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠有关”

B. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠无关”

C. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠有关”

D. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知抛物线y=x2+m的顶点M到直线l:(t为参数)的距离为1
(Ⅰ)求m:
(Ⅱ)若直线l与抛物线相交于A,B两点,与y轴交于N点,求|S△MAN﹣S△MBN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过两点,且圆心在直线上.

(1)求圆C的方程;

(2)若直线经过点且与圆C相切,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数exf(x)(e=2.71828…,是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数:

f(x)=(x>1) f(x)=x2 f(x)=cosx f(x)=2-x

中具有M性质的是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+.

(I)当a=时,求函数f(x)在x=0处的切线方程;

(II)函数f(x)是否存在零点?若存在,求出零点的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂为检验车间一生产线是否工作正常,现从生产线中随机抽取一批零件样本,测量尺寸(单位: mm )绘成频率分布直方图如图所示:

(Ⅰ)求该批零件样本尺寸的平均数 x 和样本方差 (同一组中的数据用该组区间的中点值作代表);

(Ⅱ)若该批零件尺寸 服从正态分布 ,其中 近似为样本平均数 近似为样本方差 ,利用该正态分布求

(Ⅲ)若从生产线中任取一零件,测量尺寸为30mm,根据 原则判断该生产线是否正常?

附: ;若 .

查看答案和解析>>

同步练习册答案