精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-2x+b2x+1+a
的定义域为R,且f(x)是奇函数,其中a与b是常数.
(1)求a与b的值;
(2)若x∈[-1,1],对于任意的t∈R,不等式f(x)<2t2-λt+1恒成立,求实数λ的取值范围.
分析:(1)由f(x)为奇函数得f(0)=0,f(-1)=-f(1),解出a,b,再检验f(x)为奇函数即可;
(2)由(1)可求出f(x)表达式,该问题可转化为x∈[-1,1]时,f(x)max<2t2-λt+1对任意t恒成立,结合二次函数图象可得λ的限制条件.
解答:解:(1)∵f(x)是R上的奇函数,∴
f(0)=0
f(-1)=-f(1)

-1+b
2+a
=0
-
1
2
+b
1+a
=-
-2+b
4+a
,解得
a=2
b=1
,此时f(x)=
-2x+1
2x+1+2
,经检验可得f(-x)=-f(x),
故a=2,b=1.
(2)f(x)=
-2x+1
2x+1+2
=
-2x+1
2(2x+1)
=
-(2x+1)+2
2(2x+1)

=-
1
2
+
1
2x+1
,可知f(x)在R上是减函数,又x∈[-1,1],∴f(x)的最大值为f(-1)=
1
6

∵对于任意的t∈R,不等式f(x)<2t2-λt+1恒成立,
∴2t2-λt+1>
1
6
,即2t2-λt+
5
6
>0,则有△<0,即λ2-4×2×
5
6
<0
,解得-
2
15
3
<λ<
2
15
3

所以实数λ的取值范围是{λ|-
2
15
3
<λ<
2
15
3
}.
点评:本题考查函数的奇偶性和单调性,定义是解决该类问题的基础,不等式恒成立问题常转化为函数最值问题解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案