精英家教网 > 高中数学 > 题目详情

(本小题满分15分)过曲线C:外的点A(1,0)作曲线C的切线恰有两条,
(Ⅰ)求满足的等量关系;
(Ⅱ)若存在,使成立,求的取值范围.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)
过点A(1,0)作曲线C的切线,设切点,则切线方程为:
代入得:
(*)   ……………………………………………………5分
由条件切线恰有两条,方程(*)恰有两根。
,显然有两个极值点x=0与x=1,
于是
时,
时, ,此时经过(1,0)与条件不符
所以           …………………………………………………………………8分
(Ⅱ)因为存在,使,即
所以存在,使,得,即成立
,问题转化为的最大值…………………………10分

,令
此时为增函数,当,此时为减函数,
所以的最大值为
的最大值,得
所以上单调递减,
因此。       ……………………………………………………15分
考点:本题考查利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程;存在性问题。
点评:①求曲线的切线问题常利用导数的几何意义:在切点处的导数值为曲线的切线斜率,但要注意“在某点的切线”与“过某点的切线”的区别。②解决不等式恒成立问题或者存在性问题,常采用分离参数法转化为求函数的最值问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数(其中e为自然对数)
(1)求F(x)="h" (x)的极值。
(2)设 (常数a>0),当x>1时,求函数G(x)的单调区间,并在极值存在处求极值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数.
(1)当时,求证:函数上单调递增;
(2)若函数有三个零点,求的值;
(3)若存在,使得,试求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分) 已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,判断方程实根个数.
(3)若时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)若当的表达式;
(2)求实数上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)若的极值点,求上的最大值
(2)若函数是R上的单调递增函数,求实数的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数,其图象在点处的切线方程为.
(1)求的值;
(2)求函数的单调区间,并求出在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知函数.
设关于x的不等式 的解集为且方程的两实根为.
(1)若,求的关系式;
(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)已知函数为实常数).
(I)当时,求函数上的最小值;
(Ⅱ)若方程在区间上有解,求实数的取值范围;
(Ⅲ)证明:
(参考数据:

查看答案和解析>>

同步练习册答案