【题目】已知函数.
(1)当时,求曲线与曲线的公切线的方程;
(2)设函数的两个极值点为,求证:关于的方程有唯一解.
【答案】(1)(2)见解析
【解析】
(1)求两条曲线的公切线,分别求出各自的切线,然后两条切线为同一条直线,结合两个方程求解;
(2)要证明关于的方程有唯一解,只要证明即可,由于当时,单调递增,不可能有两个零点,故不可能有两个极值点,故,利用得,又,接下来只要证明,即,令,则只要证明即可,用导数即可证明.
(1)曲线在切点处的切线方程为
,即,
曲线在切点处的切线方程为
,即,
由曲线与曲线存在公切线,
得,得,即.
令,则,
,解得,∴在上单调递增,
,解得,∴在上单调递减,
又,∴,则,
故公切线方程为.
(2)要证明关于的方程有唯一解,
只要证明,
先证明:.
∵有两个极值点,
∴有两个不同的零点,
令,则,
当时,恒成立,∴单调递增,不可能有两个零点;
当时,,则,∴在上单调递增,
,则,∴在上单调递减,
又时,,时,,
∴,得,∴.
易知,
由,得,,
∴.
下面再证明:.
,
令,则只需证,
令,
则,
∴,得.
∴有唯一解.
科目:高中数学 来源: 题型:
【题目】某流行病爆发期间,某市卫生防疫部门给出的治疗方案中推荐了三种治疗药物,,(,,的使用是互斥且完备的),并且感染患者按规定都得到了药物治疗.患者在关于这三种药物的有关参数及市场调查数据如下表所示:(表中的数据都以一个疗程计)
药物 | |||
单价(单位:元) | 600 | 1000 | 800 |
治愈率 | |||
市场使用量(单位:人) | 305 | 122 | 183 |
(Ⅰ)从感染患者中任取一人,试求其一个疗程被治愈的概率大约是多少?
(Ⅱ)试估算每名感染患者在一个疗程的药物治疗费用平均是多少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆C:(a>b>0)的离心率为,右焦点到右准线的距离为3.
(1)求椭圆C的标准方程;
(2)过点P(0,1)的直线l与椭圆C交于两点A,B.己知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线: 经过伸缩变换后得到曲线.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求出曲线、的参数方程;
(Ⅱ)若、分别是曲线、上的动点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面多边形中,是边长为2的正方形,为等腰梯形,为的中点,且,,现将梯形沿折叠,使平面平面.
(1)求证:平面;
(2)求直线与平面所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在抛物线上,过点的直线与抛物线交于A,B两点,又过A,B两点分作抛物线的切线,两条切线交于P点.记直线PA、PB的斜率分别为和.
(1)求的值;
(2),,求四边形PAEG面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图平面PAC⊥平面ABC, AC⊥BC,PE// BC,M,N分别是AE,AP的中点,且△PAC是边长为2的等边三角形,BC=3,PE =2.
(1)求证:MN⊥平面PAC;
(2)求平面PAE与平面ABC夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了解高三年级学生在线学习情况,统计了2020年2月18日-27日(共10天)他们在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.
根据组合图判断,下列结论正确的是( )
A.前5天在线学习人数的方差大于后5天在线学习人数的方差
B.前5天在线学习人数的增长比例的极差大于后5天的在线学习人数的增长比例的极差
C.这10天学生在线学习人数的增长比例在逐日增大
D.这10天学生在线学习人数在逐日增加
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com