精英家教网 > 高中数学 > 题目详情

【题目】如图,在等腰梯形中,为梯形的高,将沿折到的位置,使得.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

【答案】(1)证明见解析;(2).

【解析】

(1) 过点,垂足为,连接.再分别证明即可.

(2) 分别以,,的方向为,,轴的正方向,建立空间直角坐标系,再根据空间向量求解线面所成的角即可.

(1)证明:过点,垂足为,则,,

连接,依题意,为等腰直角三角形,

,

,故,所以,

在四棱锥中,因为,,

所以,故,

因为,,且平面,

所以平面.

(2)由(1)知,平面,所以,,又,所以,,两两垂直.为原点,分别以,,的方向为,,轴的正方向,建立空间直角坐标系,如图所示,则各点坐标为:

,,,,,

,,,

设平面的法向量为,则

,故,

,故.

所以.

设直线与平面所成角为,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是( )

A. 事件“甲分得1张白牌”与事件“乙分得1张红牌”

B. 事件“甲分得1张红牌”与事件“乙分得1张蓝牌”

C. 事件“甲分得1张白牌”与事件“乙分得2张白牌”

D. 事件“甲分得2张白牌”与事件“乙分得1张黑牌”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数为常数,)的图象关于直线对称,则函数的图象(  )

A. 关于直线对称B. 关于直线对称

C. 关于点对称D. 关于点对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A. 互联网行业从业人员中90后占一半以上

B. 互联网行业中从事技术岗位的人数超过总人数的20%

C. 互联网行业中从事运营岗位的人数90后比80前多

D. 互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求证:

(2)若,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某销售公司在当地两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了两家超市往年同期各50天的该食品销售记录,得到如下数据:

销售件数

8

9

10

11

频数

20

40

20

20

以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.

(1)求的分布列;

(2)以销售食品利润的期望为决策依据,在之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南北朝时代的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:幂势既同,则积不容异”. 其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面面积分别为,则相等总相等

A. 充分而不必要条件B. 必要而不充分条件

C. 充分必要条件D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,⊥底面的中点,与平面所成的角为.

1)求证:

2)求异面直线所成的角的大小(结果用反三角函数表示);

3)若直线与平面所成角分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过多很有创意的求法,如著名的蒲丰试验,受其启发,我们也可以通过设计下面的试验来估计的值,试验步骤如下:①先请高二年级名同学每人在小卡片上随机写下一个实数对;②若卡片上的能与构成锐角三角形,则将此卡片上交;③统计上交的卡片数,记为;④根据统计数估计的值.那么可以估计的值约为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案