【题目】用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”表示把红球和蓝球都取出来,以此类推,下列各式中,其展开式可用来表示从3个无区别的红球、3个无区别的蓝球、2个有区别的黑球中取出若干个球,且所有蓝球都取出或都不取出的所有取法的是
①(1+a+a2+a3)(1+b3)(1+c)2
②(1+a3)(1+b+b2+b3)(1+c)2
③(1+a)3(1+b+b2+b3)(1+c2)
④(1+a3)(1+b)3(1+c+c2)
科目:高中数学 来源: 题型:
【题目】为宣传3月5日学雷锋纪念日,重庆二外在高一,高二年级中举行学雷锋知识竞赛,每年级出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用表示甲队总得分.
(1)求随机变量的分布列及其数学期望;
(2)求甲队和乙队得分之和为4的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为,,(且),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是
A. 甲 B. 乙 C. 丙 D. 乙和丙都有可能
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=(﹣x2+ax)ex(x∈R,e为自然对数的底数).
(1)当a=2时,求函数f(x)的单调递增区间;
(2)若函数f(x)在(﹣1,1)上单调递增,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣kx+2,k∈R.
(1)若k=1,求函数f(x)的单调区间;
(2)若f(x)<2在R+上恒成立,求k的取值范围;
(3)若x1>0,x2>0,x1+x2<ex1x2 , 求证x1+x2>1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次小型抽奖活动中,抽奖规则如下:一个不透明的口袋中共有6个大小相同的球,它们是1个红球,1个黄球,和4个白球,从中抽到红球中50元,抽到黄球中10元,抽到白球不中奖.某人从中一次性抽出两球,求:
(1)该人中奖的概率;
(2)该人获得的总奖金X(元)的分布列和均值E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017四川宜宾二诊】已知函数且.
(I)若,求函数的单调区间;(其中是自然对数的底数)
(II)设函数,当时,曲线与有两个交点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com