精英家教网 > 高中数学 > 题目详情
已知定义在R上的奇函数f(x)=
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x)是定义在R上的周期为2的奇函数,切当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.
考点:函数的周期性,函数奇偶性的性质
专题:综合题,函数的性质及应用
分析:(1)由题意,函数在R上是奇函数,由于其在原点有定义故一定有f(0)=0,再结合f(-1)=-f(1),由此两方程即可求出a、b的值;
(2)本小题的不等式恒成立,故可由(1)解出的函数解析式求出函数的最值,将恒成立的不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立成立,再由二次函数的性质研究此不等式组,解出参数K的取值范围;
(3)由题设条件函数是周期为2的奇函数,故可先研究其一个周期上的零点,再由周期性得出所有的零点,由于函数是奇函数易得f(0)=0,再由周期性的性质与奇函数的性质可得出
f(-1)=f(1)
f(1)=-f(1)
由此解得f(-1)=f(1)=0,由此知一个周期上的零点,再由周期性得出结论
解答: 解:(1)∵定义在R上的奇函数f(x)=
-2x+b
2x+1+a

∴f(0)=0,
即-1+b=0,b=1
∵f(x)=
-2x+1
2•2x+a
,f(-x)=-f(x),
-2-x+1
2•2-x+a
=-
-2x+1
2•2x+a

2x-1
2+a•2x
=
2x-1
2•2x+2

即a=2
故a=2,b=1
(2)f(x)=
1-2x
2•2x+2
,=
1
2
×
1-2x
1+2x

值域为:(-
1
2
1
2

∵不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,
则需且只需
-m2+(k+2)m-
3
2
≤-
1
2
m2+2km+k+
5
2
1
2
m∈R恒成立
m2-(k+2)m+1≥0
m2+2km+k+2≥0
对 m∈R恒成立
只需
1=(k+2)2-4≤0
2=(2k)2-4(k+2)≤0
解得-1≤k≤0,
(3)当x∈(-1,1)时g(x)=f(x)-x=-
1
2
+
1
2x+1
-x
显然 y=
1
2x+1
,y=-x均为减函数,故g(x)在(-1,1)上为减函数,
由于g(0)=0,故在(-1,1)内g(x)=0有唯一根x=0
由于g(x)周期为2,由此有x∈(2k-1,2k+1)内有唯 一根x=2k(k∈N)①
综合得x=2k(k∈N)为g(x)=0的根
又因为g(-1)=g(-1+2)=g(1)得-g(1)=g(1)
故g(1)=0,因此得g(2k+1)=0(k∈N)②
综合①②有g(x)=0的所有解为一切整数
点评:本题考查函数恒成立的问题,函数恒成立的问题由于其抽象,推理难度大,方法不易得出而使得解此类题比较困难,解此类题,理解题意,对题设中所给的恒成立的关系进行准确转化是解题的关键,对探究意识要求较高,此类题思维难度过大.,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数(a2-3a+2)+(a-2)i是纯虚数,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次物理竞赛中,学生成绩均在内[50,100),相应的频率分布直方图如图,已知成绩在[60,70)的学生有40人,则成绩在[70,90)的人数为(  )
A、20B、22C、25D、26

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在区间[-1,1]上求y=f(x)的值域;
(Ⅲ)在区间[a,a+1]上求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求y=2
1
3-x
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

物体的运动方程是s=-
1
6
t3+3t2
-5,则物体在t=3的速度为
 
,加速度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=n2+2n.数列{bn}中,b1=1,bn=abn-1(n≥2).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)求证:①bn+1>2bn;②
1
b1
+
1
b2
+
1
b3
+…+
1
bn
<2-
1
bn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是正常数,且a,b,c互不相等,x,y,z∈(0,+∞),求证:
a2
x2
+
b2
y2
+
c2
z2
(a+b+c)2
x+y+z
,并指出等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log 
1
3
(-x2+3x)的单调递减区间是
 

查看答案和解析>>

同步练习册答案