ijѧÉúÔÚÖ¤Ã÷µÈ²îÊýÁÐÇ°nÏîºÍ¹«Ê½Ê±£¬Ö¤·¨ÈçÏ£º

    (1)µ±n=1ʱ£¬S1=a1ÏÔÈ»³ÉÁ¢¡£

    (2)¼ÙÉèn=kʱ£¬¹«Ê½³ÉÁ¢£¬¼´Sn=ka1+¡£

µ±n=k+1ʱ£¬

    ¡àn=k+1ʱ¹«Ê½³ÉÁ¢¡£

    ¡àÓÉ(1)¡¢(2)Öª£¬¶Ôn¡ÊN£¬¹«Ê½¶¼³ÉÁ¢¡£

    ÒÔÉÏÖ¤Ã÷´íÎóµÄÊÇ(¡¡¡¡)

A.µ±nÈ¡µÚÒ»¸öÖµ1ʱ£¬Ö¤Ã÷²»¶Ô

B.¹éÄɼÙÉèµÄд·¨²»¶Ô

C.´Ón=kµ½£¬n=k+1µÄÍÆÀíÖÐδÓùéÄɼÙÉè

D.´Ón=kµ½n=k+1µÄÍÆÀíÓдíÎó

 

´ð°¸£ºC
Ìáʾ£º

ʹÓÃÕýÈ·ÑÏÃܵÄÖ¤Ã÷ÍÆÀí¹ý³Ì¡£

 


Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÊýѧ½ÌÑÐÊÒ ÌâÐÍ£º013

ijѧÉúÔÚÖ¤Ã÷µÈ²îÊýÁÐÇ°nÏîºÍ¹«Ê½Ê±£¬Ö¤·¨ÈçÏ£º

    (1)µ±n=1ʱ£¬S1=a1ÏÔÈ»³ÉÁ¢¡£

    (2)¼ÙÉèn=kʱ£¬¹«Ê½³ÉÁ¢£¬¼´Sn=ka1+¡£

µ±n=k+1ʱ£¬

    ¡àn=k+1ʱ¹«Ê½³ÉÁ¢¡£

    ¡àÓÉ(1)¡¢(2)Öª£¬¶Ôn¡ÊN£¬¹«Ê½¶¼³ÉÁ¢¡£

    ÒÔÉÏÖ¤Ã÷´íÎóµÄÊÇ(¡¡¡¡)

A.µ±nÈ¡µÚÒ»¸öÖµ1ʱ£¬Ö¤Ã÷²»¶Ô

B.¹éÄɼÙÉèµÄд·¨²»¶Ô

C.´Ón=kµ½£¬n=k+1µÄÍÆÀíÖÐδÓùéÄɼÙÉè

D.´Ón=kµ½n=k+1µÄÍÆÀíÓдíÎó

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º013

ijѧÉúÔÚÖ¤Ã÷µÈ²îÊýÁÐÇ°nÏîºÍ¹«Ê½Ê±£¬Ö¤·¨ÈçÏ£º

£¨1£©µ±n=1ʱ£¬S1=a1ÏÔÈ»³ÉÁ¢.

£¨2£©¼ÙÉèn=kʱ£¬¹«Ê½³ÉÁ¢£¬¼´

Sk=ka1+£¬

µ±n=k+1ʱ£¬

Sk+1=a1+a2+¡­+ak+ak+1

=a1+(a1+d)+(a1+2d)+¡­+a1+(k-1)d+a1+kd

=(k+1)a1+(d+2d+¡­+kd)

=(k+1)a1+d

=(k+1)a1+d.

¡àn=k+1ʱ¹«Ê½³ÉÁ¢.

¡àÓÉ£¨1£©£¨2£©¿ÉÖª¶Ôn¡ÊN+,¹«Ê½³ÉÁ¢.

ÒÔÉÏÖ¤Ã÷´íÎóµÄÊÇ£¨¡¡¡¡£©

A.µ±nÈ¡µÚÒ»¸öÖµ1ʱ£¬Ö¤Ã÷²»¶Ô

B.¹éÄɼÙÉèд·¨²»¶Ô

C.´Ón=kµ½n=k+1µÄÍÆÀíÖÐδÓùéÄɼÙÉè

D.´Ón=kµ½n=k+1µÄÍÆÀíÓдíÎó

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉè¼ÆÑ¡ÐÞÊýѧ£­4-5È˽ÌA°æ È˽ÌA°æ ÌâÐÍ£º013

ijѧÉúÔÚÖ¤Ã÷µÈ²îÊýÁÐÇ°nÏîºÍ¹«Ê½Ê±£¬Ö¤·¨ÈçÏ£º

(1)µ±n£½1ʱ£¬S1£½a1ÏÔÈ»³ÉÁ¢£®

(2)¼ÙÉèn£½kʱ£¬¹«Ê½³ÉÁ¢£¬¼´

Sk£½ka1£«£¬

µ±n£½k£«1ʱ£¬

Sk+1£½a1£«a2£«¡­£«ak£«ak+1

£½a1£«(a1£«d)£«(a1£«2d)£«¡­£«a1£«(k£­1)d£«a1£«kd

£½(k£«1)a1£«(d£«2d£«¡­£«kd)

£½(k£«1)a1£«d

£½(k£«1)a1£«d£®

¡àn£½k£«1ʱ¹«Ê½³ÉÁ¢£®

¡àÓÉ(1)(2)¿ÉÖª¶Ôn¡ÊN+£¬¹«Ê½³ÉÁ¢£®

ÒÔÉÏÖ¤Ã÷´íÎóµÄÊÇ

[¡¡¡¡]
A£®

µ±nÈ¡µÚÒ»¸öÖµ1ʱ£¬Ö¤Ã÷²»¶Ô

B£®

¹éÄɼÙÉèд·¨²»¶Ô

C£®

´Ón£½kµ½n£½k£«1µÄÍÆÀíÖÐδÓùéÄɼÙÉè

D£®

´Ón£½kµ½n£½k£«1µÄÍÆÀíÓдíÎó

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijѧÉúÔÚÖ¤Ã÷µÈ²îÊýÁÐÇ°nÏîºÍ¹«Ê½Ê±£¬Ö¤·¨ÈçÏ£º

£¨1£©µ±n=1ʱ£¬S1=a1ÏÔÈ»³ÉÁ¢.

£¨2£©¼ÙÉèn=kʱ£¬¹«Ê½³ÉÁ¢£¬¼´

Sk=ka1+£¬

µ±n=k+1ʱ£¬

Sk+1=a1+a2+¡­+ak+ak+1

=a1+(a1+d)+(a1+2d)+¡­+a1+(k-1)d+a1+kd

=(k+1)a1+(d+2d+¡­+kd)

=(k+1)a1+d

=(k+1)a1+d.

¡àn=k+1ʱ¹«Ê½³ÉÁ¢.

¡àÓÉ£¨1£©£¨2£©¿ÉÖª¶Ôn¡ÊN+,¹«Ê½³ÉÁ¢.

ÒÔÉÏÖ¤Ã÷´íÎóµÄÊÇ£¨    £©

A.µ±nÈ¡µÚÒ»¸öÖµ1ʱ£¬Ö¤Ã÷²»¶Ô

B.¹éÄɼÙÉèд·¨²»¶Ô

C.´Ón=kµ½n=k+1µÄÍÆÀíÖÐδÓùéÄɼÙÉè

D.´Ón=kµ½n=k+1µÄÍÆÀíÓдíÎó

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷1+a+a2+¡­+an+1= (n¡ÊN*,a¡Ù1)ʱ,ÔÚÑéÖ¤n=1³ÉÁ¢Ê±,×ó±ßӦΪijѧÉúÔÚÖ¤Ã÷µÈ²îÊýÁÐÇ°nÏîºÍ¹«Ê½Ê±£¬Ö¤·¨ÈçÏ£º

(1)µ±n=1ʱ£¬S1=a1ÏÔÈ»³ÉÁ¢£»

(2)¼ÙÉèµ±n=kʱ£¬¹«Ê½³ÉÁ¢£¬¼´Sk=ka1+,

µ±n=k+1ʱ£¬Sk+1 =a1+a2+¡­+ak+ak+1 =a1+(a1+d)+(a1+2d)+¡­+£Ûa1+(k-1)d£Ý+(a1+kd)=(k+1)a1+(d+2d+¡­+kd)

=(k+1)a1+ d=(k+1)a1+ d£¬

¡àn=k+1ʱ¹«Ê½³ÉÁ¢.

ÓÉ(1)(2)Öª£¬¶Ôn¡ÊN*ʱ£¬¹«Ê½¶¼³ÉÁ¢.

ÒÔÉÏÖ¤Ã÷´íÎóµÄÊÇ(¡¡¡¡)

A.µ±nÈ¡µÚÒ»¸öÖµ1ʱ£¬Ö¤Ã÷²»¶Ô

B.¹éÄɼÙÉèµÄд·¨²»¶Ô

C.´Ón=kµ½n=k+1ʱµÄÍÆÀíÖÐδÓùéÄɼÙÉè

D.´Ón=kµ½n=k+1ʱµÄÍÆÀíÓдíÎó

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸