【题目】如图,在直角△ABC中,AB⊥BC,D为BC边上异于B、C的一点,以AB为直径作⊙O,并分别交AC,AD于点E,F.
(Ⅰ)证明:C,E,F,D四点共圆;
(Ⅱ)若D为BC的中点,且AF=3,FD=1,求AE的长.
【答案】(Ⅰ)证明:连结EF,BE,则∠ABE=∠AFE,因为AB是⊙O是直径, 所以,AE⊥BE,又因为AB⊥BC,∠ABE=∠C,
所以∠AFE=∠C,即∠EFD+∠C=180°,
∴C,E,F,D四点共圆.
(Ⅱ)解:因为AB⊥BC,AB是直径,
所以,BC是圆的切线,DB2=DFDA=4,即BD=2,
所以,AB= =2 ,
因为D为BC的中点,所以BC=4,AC= =2 ,
因为C、E、F、D四点共圆,所以AEAC=AFAD,
即2 AE=12,即AE=
【解析】(Ⅰ)连结EF,BE,说明AB是⊙O是直径,推出∠ABE=∠C,然后证明C,E,F,D四点共圆.(Ⅱ)利用切割线定理求解BD,利用C、E、F、D四点共圆,得到AEAC=AFAD,然后求解AE.
科目:高中数学 来源: 题型:
【题目】已知f(x)= ,g(x)=|x﹣2|,则下列结论正确的是( )
A.h(x)=f(x)+g(x)是偶函数
B.h(x)=f(x)?g(x)是奇函数
C.h(x)= 是偶函数
D.h(x)= 是奇函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①已知集合,则“”是“”的充分不必要条件;
②“”是“”的必要不充分条件;
③“函数的最小正周期为”是“”的充要条件;
④“平面向量与的夹角是钝角”的要条件是“”.
其中正确命题的序号是 .(把所有正确命题的序号都写上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.(12分)
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据某水文观测点的历史统计数据,得到某河流水位X(单位:米)的频率分布直方图如图:将河流水位在以上6段的频率作为相应段的概率,并假设每年河流水位互不影响.
(1)求未来三年,至多有1年河流水位X∈[27,31)的概率(结果用分数表示);
(2)该河流对沿河A企业影响如下:当X∈[23,27)时,不会造成影响;当X∈[27,31)时,损失10000元;当X∈[31,35)时,损失60000元,为减少损失,现有种应对方案: 方案一:防御35米的最高水位,需要工程费用3800元;
方案二:防御不超过31米的水位,需要工程费用2000元;
方案三:不采取措施;
试比较哪种方案较好,并请说理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com