精英家教网 > 高中数学 > 题目详情

(选修4-1,几何证明选讲)已知O为△ABC外接圆的圆心,AE是圆的直径,AD⊥BC,BF⊥AC,D,F为垂足,AD、BF相交于点H,OP⊥AB,垂足为P.
(1)求证:AB•AC=AE•AD;
(2)求证:CH=2OP.

证明:(1)连接BE,
因为AE是直径,所以AB⊥BE,
又AD⊥BC,∠AEB=∠ACD,
所以Rt△ABE∽Rt△ADC.
,∴AB•AC=AE•AD.
(2)连接CE,则CE⊥AC,又BH⊥AC,∴BH∥CE.
∵BH⊥AC,AH⊥BC,所以H为△ABC的垂心.
CH⊥AB,EB⊥AB,∴BE∥CH
所以四边形BECH为平行四边形,∴CH=BE.
∵OP⊥AB,EB⊥AB,∴OP∥BE.
又O为AE的中点.∴OP=BE,∴OP=CH.
∴CH=2OP.
分析:(1)利用AE是直径,可得AB⊥BE,再利用AD⊥BC,∠AEB=∠ACD即可证明Rt△ABE∽Rt△ADC,进而证得结论.
(2)先利用CE⊥AC以及BH⊥AC,得BH∥CE,进而得BH⊥AC,AH⊥BC,证得H为△ABC的垂心,再利用CH⊥AB,EB⊥AB得四边形BECH为平行四边形?CH=BE,最后利用OP⊥AB,EB⊥AB,得OP∥BE,再利用O为AE的中点即可证明结论.
点评:一般在证明线段之间的乘积关系时,其常用方法是利用相似三角形的性质来证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•辽宁)选修4-1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连接DB并延长交⊙O于点E.证明:
(Ⅰ)AC•BD=AD•AB;
(Ⅱ)AC=AE.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.
(1)求证:FB=FC;
(2)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
如图,圆O为△ABC的外接圆,且AB=AC,过点A的直线交圆O于点D,交BC的延长线于点F,DE是BD的延长线,连接CD.
(Ⅰ)求证:∠EDF=∠CDF;
(Ⅱ)求证:AB2=AF•AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
如图设M为线段AB中点,AE与BD交于点C∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(1)写出图中三对相似三角形,并对其中一对作出证明;
(2)连接FG,设α=45°,AB=4
2
,AF=3,求FG长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)选修4-1:几何证明选讲
如图,半径分别为R,r(R>r>0)的两圆⊙O,⊙O1内切于点T,P是外圆⊙O上任意一点,连PT交⊙O1于点M,PN与内圆⊙O1相切,切点为N.求证:PN:PM为定值.

查看答案和解析>>

同步练习册答案