精英家教网 > 高中数学 > 题目详情

【题目】有一圆与直线相切于点,且经过点,求此圆的方程.

【答案】

【解析】

法一:设出圆的方程,代入B点坐标,计算参数,即可.法二:设出圆的方程,结合题意,建立方程,计算参数,即可。法三:设出圆的一般方程,代入A,B坐标,建立方程,计算参数,即可。法四:计算CA直线方程,计算BP方程,计算点P坐标,计算半径和圆心坐标,建立圆方程,即可。

法一:由题意可设所求的方程为

又因为此圆过点,将坐标代入圆的方程求得

所以所求圆的方程为.

法二:设圆的方程为

则圆心为,由,

,解得

所以所求圆的方程为.

法三:设圆的方程为,由在圆上,

,解得

所以所求圆的方程为.

法四:设圆心为,则,又设与圆的另一交点为

的方程为

.

又因为

所以,所以直线的方程为.

解方程组,得,所以

所以圆心为的中点,半径为.

所以所求圆的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}前n项和为Sn , 且满足S3= ,a6 , 3a5 , a7成等差数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn= ,且数列bn的前n项的和Tn , 试比较Tn 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图4,四边形ABCD为菱形,∠ABC=60°.PA⊥平面ABCD,E为PC中点.
(Ⅰ)求证:平面BED⊥平面ABCD;
(Ⅱ)求平面PBA与平面EBD所成二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P为⊙O外一点,PC交⊙O于F,C,PA切⊙O于A,B为线段PA的中点,BC交⊙O于D,线段PD的延长线与⊙O交于E,连接FE.求证:
(Ⅰ)△PBD∽△CBP;
(Ⅱ)AP∥FE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则(UA)∩B=(  )
A.?
B.{x|<x≤1}
C.{x|x<1}
D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20181024日,世界上最长的跨海大桥一港珠澳大桥正式通车在一般情况下,大桥上的车流速度单位:千米是车流密度单位:辆千米的函数当桥上的车流密度达到220千米时,将造成堵塞,此时车流速度为0;当车流密度不超过20千米时,车流速度为100千米时,研究表明:当时,车流速度v是车流密度x的一次函数.

时,求函数的表达式;

当车流密度x为多大时,车流量单位时间内通过桥上某观测点的车辆数,单位:辆可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 且a2=8,S4=40.数列{bn}的前n项和为Tn , 且Tn﹣2bn+3=0,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn= , 求数列{cn}的前n项和Pn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通常表明地震能量大小的尺度是里氏震级,其计算公式为:,其中,是被测地震的最大振幅,是“标准地震”的振幅使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差

1假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是30,此时标准地震的振幅是0001,计算这次地震的震级精确到01

25级地震给人的震感已比较明显,计算8级地震的最大振幅是5级地震的最大振幅的多少倍?

以下数据供参考:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“渐减数”是指每个数字比其左边数字小的正整数(如98765),若把所有的五位渐减数按从小到大的顺序排列,则第20个数为_____

查看答案和解析>>

同步练习册答案