【题目】如图,在中,,,,将绕边AB翻转至,使面面ABC,D是BC的中点,设Q是线段PA上的动点,则当PC与DQ所成角取得最小值时,线段AQ的长度为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线:,(为参数),将曲线上的所有点的横坐标缩短为原来的,纵坐标缩短为原来的后得到曲线,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为。
(1)求曲线的极坐标方程和直线l的直角坐标方程;
(2)设直线l与曲线交于不同的两点A,B,点M为抛物线的焦点,求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 设是实数,若方程表示双曲线,则.
B. “为真命题”是“为真命题”的充分不必要条件.
C. 命题“,使得”的否定是:“,”.
D. 命题“若为的极值点,则”的逆命题是真命题.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了个蜜柚进行测重,其质量分别在,,,,, (单位:克)中,其频率分布直方图如图所示,
(Ⅰ)已经按分层抽样的方法从质量落在,的蜜柚中抽取了个,现从这个蜜柚中随机抽取个。求这个蜜柚质量均小于克的概率:
(Ⅱ)以各组数据的中间值代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有个蜜柚等待出售,某电商提出了两种收购方案:
方案一:所有蜜柚均以元/千克收购;
方案二:低于克的蜜柚以元/个收购,高于或等于克的以元/个收购.
请你通过计算为该村选择收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C所对应的边分别为a,b,c.
(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比数列,求cosB的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有除颜色外形状大小完全相同的6个小球,其中有4个编号为1,2, 3, 4的红球,2个编号为A、B的黑球,现从中任取2个小球.;
(1)求所取2个小球都是红球的概率;
(2)求所取的2个小球颜色不相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:极坐标与参数方程]
在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)若射线 与曲线交于,两点,与曲线交于,两点,求取最大值时的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com