精英家教网 > 高中数学 > 题目详情

已知集合M={x|(x+2)(1-x)>0},N={x|数学公式},则M∩N=


  1. A.
    (-∞,-2)∪(1,+∞)
  2. B.
    (-2,1)
  3. C.
    (-2,-1]
  4. D.
    (-2,-1)
D
分析:先根据一元二次不等式解集的理论,解出集合M,再用分式的正负号的性质求出集合N,然后可求它们的交集.
解答:集合M={x|(x+2)(1-x)>0},
解之,得集合M={x|-2<x<1}=(-2,1);
集合={x|x+1<0}=(-∞,-1)
所以集合M∩N=(-2,1)∩(-∞,-1)=(-2,-1)
故选D.
点评:本题考查绝对值不等式的解法,交集及其运算,考查计算能力,是基础题.做题时要注意一元二次不等式化为二次项系数为正以及分式的分母不为零等问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集I=R已知集合M={x|(x+3)2≤0},N={x|2x2=(
12
x-6}
(1)求(CIM)∩N.
(2)记集合A=(CIM)∩N,已知B={x|a-1≤x≤5-a,a∈R},若B∪A=A.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知集合M={x|x2-3x+2=0},N={x∈Z|-1≤x-1≤2},Q={1,a2+1,a+1}.
(1)求M∩N;
(2)若M⊆Q,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x2>1},N={x|log2|x|>0},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|1+x>0},N={x|
1
x
<1},则M∩N
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|
x+1x+a
<2}
,且1∉M,实数a的取值范围为
(-1,0]
(-1,0]

查看答案和解析>>

同步练习册答案