精英家教网 > 高中数学 > 题目详情
(2012•湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),
(1)当BD的长为多少时,三棱锥A-BCD的体积最大;
(2)当三棱锥A-BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.
分析:(1)设BD=x,先利用线面垂直的判定定理证明AD即为三棱锥A-BCD的高,再将三棱锥的体积表示为x的函数,最后利用导数求函数的最大值即可;
(2)由(1)可先建立空间直角坐标系,写出相关点的坐标和相关向量的坐标,设出动点N的坐标,先利用线线垂直的充要条件计算出N点坐标,从而确定N点位置,再求平面BMN的法向量,从而利用夹角公式即可求得所求线面角
解答:解:(1)设BD=x,则CD=3-x
∵∠ACB=45°,AD⊥BC,∴AD=CD=3-x
∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D
∴AD⊥平面BCD
∴VA-BCD=
1
3
×AD×S△BCD=
1
3
×(3-x)×
1
2
×x(3-x)=
1
6
(x3-6x2+9x)
设f(x)=
1
6
(x3-6x2+9x)  x∈(0,3),
∵f′(x)=
1
2
(x-1)(x-3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数
∴当x=1时,函数f(x)取最大值
∴当BD=1时,三棱锥A-BCD的体积最大;
(2)以D为原点,建立如图直角坐标系D-xyz,
由(1)知,三棱锥A-BCD的体积最大时,BD=1,AD=CD=2
∴D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E(
1
2
,1,0),且
BM
=(-1,1,1)
设N(0,λ,0),则
EN
=(-
1
2
,λ-1,0)
∵EN⊥BM,∴
EN
BM
=0
即(-1,1,1)•(-
1
2
,λ-1,0)=
1
2
+λ-1=0,∴λ=
1
2
,∴N(0,
1
2
,0)
∴当DN=
1
2
时,EN⊥BM
设平面BMN的一个法向量为
n
=(x,y,z),由
n
BN
=0
n
BM
=0
BN
=(-1,
1
2
,0)
y=2x
z=-x
,取
n
=(1,2,-1)
设EN与平面BMN所成角为θ,则
EN
=(-
1
2
,-
1
2
,0)
sinθ=|cos<
EN
n
>|=|
EN
n
|
EN
|•|
n
|
|=
|-
1
2
-1|
6
×
2
2
=
3
2

∴θ=60°
∴EN与平面BMN所成角的大小为60°
点评:本题主要考查了线面垂直的判定,折叠问题中的不变量,空间线面角的计算方法,空间向量、空间直角坐标系的运用,有一定的运算量,属中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知函数y=g(x)的图象由f(x)=sin2x的图象向右平移φ(0<φ<π)个单位得到,这两个函数的部分图象如图所示,则φ=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北)如图,双曲线
x2
a2
-
y2
b2
=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:
(Ⅰ)双曲线的离心率e=
5
+1
2
5
+1
2

(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值
S1
S2
=
5
+2
2
5
+2
2

查看答案和解析>>

同步练习册答案