精英家教网 > 高中数学 > 题目详情
8.设x,y为正实数,且x+2y=1,则$\frac{1}{x}+\frac{1}{y}$的最小值为(  )
A.$2+2\sqrt{2}$B.$3+2\sqrt{2}$C.2D.3

分析 利用“乘1法”和基本不等式即可得出.

解答 解:x,y为正实数,且x+2y=1,
则$\frac{1}{x}+\frac{1}{y}$=($\frac{1}{x}+\frac{1}{y}$)(x+2y)=1+2+$\frac{2y}{x}$+$\frac{x}{y}$≥3+2$\sqrt{\frac{2y}{x}•\frac{x}{y}}$=3+2$\sqrt{2}$,
当且仅当x=$\sqrt{2}$-1,y=$\frac{2-\sqrt{2}}{2}$时取等号,
故则$\frac{1}{x}+\frac{1}{y}$的最小值为3+2$\sqrt{2}$,
故选:B

点评 本题考查了均值不等式求最值,做题时应细心观察,找到变形式子,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是(  )
A.平面ABCDB.平面PBCC.平面PADD.平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow a=(cosα,2sinα),\overrightarrow b=(2cosβ,-sinβ)$,$α、β∈[0,\frac{π}{2}]$.
(1)若$\overrightarrow a•\overrightarrow b=-\frac{10}{13}$,$sinβ=\frac{4}{5}$,求sin(α+2β)的值;
(2)若$\overrightarrow c=(0,1)$,求$|{\overrightarrow a-\overrightarrow c}|$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线x+$\sqrt{3}$y+k=0的倾斜角是(  )
A.$\frac{5}{6}$πB.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow m=(sinx,-1)$,向量$\overrightarrow n=(\sqrt{3}cosx,-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(Ⅰ)求f(x)单调递减区间;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,$a=2\sqrt{3}$,c=4,且f(A)恰是f(x)在$[{0,\frac{π}{2}}]$上的最大值,求A,b,和△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.向量$\overrightarrow b=(\frac{1}{2},\frac{{\sqrt{3}}}{2})$,$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,则向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a,b,c分别为内角A,B,C的对边,三边a,b,c成等差数列,且$B=\frac{π}{6}$,则(cosA-cosC)2的值为(  )
A.$1+\sqrt{3}$B.$\sqrt{2}$C.$2+\sqrt{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+2ax+2,x∈[-5,5].
(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)求f(x)在[-5,5]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知矩形ABCD中,AB=2AD=4,E为CD的中点,沿AE将三角形AED折叠,使平面ADE⊥平面ABCE.
(1)求证:BE⊥AD;
(2)若CD=2$\sqrt{3}$,求直线AC与平面BDE所成角的正弦值.

查看答案和解析>>

同步练习册答案