A. | $2+2\sqrt{2}$ | B. | $3+2\sqrt{2}$ | C. | 2 | D. | 3 |
分析 利用“乘1法”和基本不等式即可得出.
解答 解:x,y为正实数,且x+2y=1,
则$\frac{1}{x}+\frac{1}{y}$=($\frac{1}{x}+\frac{1}{y}$)(x+2y)=1+2+$\frac{2y}{x}$+$\frac{x}{y}$≥3+2$\sqrt{\frac{2y}{x}•\frac{x}{y}}$=3+2$\sqrt{2}$,
当且仅当x=$\sqrt{2}$-1,y=$\frac{2-\sqrt{2}}{2}$时取等号,
故则$\frac{1}{x}+\frac{1}{y}$的最小值为3+2$\sqrt{2}$,
故选:B
点评 本题考查了均值不等式求最值,做题时应细心观察,找到变形式子,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{6}$π | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $1+\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $2+\sqrt{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com