精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的前n项和Sn=3n2-2n
(1)求数列{an}的通项公式;
(2)判断数列{an}是否是等差数列,若是求出首项和公差,若否,请说明理由.

分析 (1)由Sn=3n2-2n,可得当n=1时,a1=1.当n≥2时,an=Sn-Sn-1,即可得出.
(2)当n≥2时,只有证明an-an-1=常数即可.

解答 解:(1)∵Sn=3n2-2n,∴当n=1时,a1=3-2=1.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5.
当n=1时上式也成立,∴an=6n-5.
(2)∵当n≥2时,an-an-1=6n-5-[6(n-1)-5]=6.
∴数列{an}是等差数列,首项为1,公差为6.

点评 本题考查了递推式的应用、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)的定义域为R,且对于任意x、y恒有f(xy)=f(x)+f(y),又x>1时,f(x)>0.
(1)判断f(x)的奇偶性性并加以证明.
(2)求证:f(x)在(0,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合A={x|x2-2x-3<0},B={x|x2<p},若B?A,则实数p的取值范围是(  )
A.(0,1]B.(-∞,1]C.(-1,3]D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$\frac{\sqrt{1-{x}^{2}}}{lnx}$的定义域用区间表示为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在锐角△ABC中,内角A、B、C的对边分别为a,b,c,已知a+2b=4,asinA+4bsinB=6asinBsinC,则△ABC的面积的最小值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=($\frac{1}{2}$)x,a>0,b>0,a≠b,A=f($\frac{a+b}{2}$),B=f($\sqrt{ab}$),c=f($\frac{2ab}{a+b}$),则A,B,C中最大的为C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设m∈R,解关于x的不等式:m2x2+2mx-3<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解不等式
(1)|x-1|+|x-3|>4;
(2)|x-3|-|x+1|<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数的导数
(1)y=x+$\frac{1}{x}$   
(2)y=$\frac{sin2x}{{{e^{2x}}}}$.

查看答案和解析>>

同步练习册答案