精英家教网 > 高中数学 > 题目详情

【题目】袋中装有个大小相同的黑球和白球.已知从袋中任意摸出个球,至少得到个白球的概率是.

(1)求白球的个数;

(2)从袋中任意摸出个球,记得到白球的个数为,求随机变量的分布列和数学期望.

【答案】(1)5.

(2)分布列见解析;.

【解析】分析:(1)设黑球的个数为,则白球的个数为,记两个都是黑球得的事件为,由可得结果;(2)离散型随机变量的取值可能为:,结合组合知识,利用古典概型概率公式根据独立重复试验概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.

详解:(1)设黑球的个数为,则白球的个数为

记两个都是黑球得的事件为

则至少有一个白球的事件与事件为对立事件

所以

解得

所以白球的个数为.

(2)离散型随机变量的取值可能为:

所以的分布列为

因为服从超几何分布,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学一起去向老师询问各自的分班情况,老师说:你们四人中有位分到班,位分到班,我现在给甲看乙、丙的班级,给乙看丙的班级,给丁看甲的班级.看后甲对大家说:我还是不知道我的班级,根据以上信息,则( )

A. 乙可以知道四人的班级 B. 丁可以知道四人的班级

C. 乙、丁可以知道对方的班级 D. 乙、丁可以知道自己的班级

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.

(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(2)若二面角P﹣CD﹣A的大小为45°,求直线PA与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知边长为 的菱形ABCD中,∠BAD=60°,沿对角线BD折成二面角A﹣BD﹣C为120°的四面体ABCD,则四面体的外接球的表面积为(
A.25π
B.26π
C.27π
D.28π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知是奇函数,求常数m的值;

(2)画出函数的图象,并利用图象回答:k为何值时,方程 无解?有一解?有两解?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点,对任意满足,且有最小值为

1)求的解析式;

2)求函数在区间[0,1]上的最小值,其中

3)在区间[1,3]上,的图象恒在函数的图象上方,试确定实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①设有一个回归方程,变量增加一个单位时,平均增加个单位;②线性回归直线必过必过点;③在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有的可能患肺病;其中错误的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产的某批产品的销售量万件(生产量与销售量相等)与促销费用万元满足 (其中为正常数).已知生产该批产品还需投入成本万元(不含促销费用),产品的销售价格定为元/件

(1)将该产品的利润万元表示为促销费用万元的函数;(注:利润=销售收入-促销费-投入成本)

(2)当促销费用投入多少万元时,该公司的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C 的焦点为F,过F且斜率为的直线l交于AB两点,

(1)求的方程;

(2)求过点AB且与的准线相切的圆的方程.

查看答案和解析>>

同步练习册答案