精英家教网 > 高中数学 > 题目详情

【题目】某贫困地区有1500户居民,其中平原地区1050户,山区450户,为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元)

(I)应收集多少户山区家庭的样本数据?

(Ⅱ)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为, , , ,,.如果将频率率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;

(Ⅲ)样本数据中,由5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

超过2万元

不超过2万元

总计

平原地区

山区

5

总计

【答案】(Ⅰ)45;(Ⅱ)0.45;(Ⅲ)答案见解析.

【解析】分析:(Ⅰ)由已知可得每户居民被抽取的概率为,根据古典概型概率公式可得结果;(Ⅱ)由直方图,利用符合条件矩形面积之和可求得该地区2017年家庭年收入超过万元的概率;(Ⅲ)样本数据中,年收入超过2万元的户数户,而样本数据中,有5户山区家庭的年收入超过2万元,完成列联表,求出,即可判断是否有的把握认为 “该地区2017年家庭年收入与地区有关” .

详解:(Ⅰ)由已知可得每户居民被抽取的概率为0.1,故应收集户山区家庭的样本数据.

(Ⅱ)由直方图可知该地区2017年家庭年收入超过1.5万元的概率约为

(Ⅲ)样本数据中,年收入超过2万元的户数为户.

而样本数据中,有5户山区家庭的年收入超过2万元,故列联表如下:

所以

∴有的把握认为该地区2017年家庭年收入与地区有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95. 参考公式:相关系数
回归直线方程是: ,其中
参考数据:
(1)若规定85分以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:

学生编号

1

2

3

4

5

6

7

8

数学分数x

60

65

70

75

80

85

90

95

物理分数y

72

77

80

84

88

90

93

95

化学分数z

67

72

76

80

84

87

90

92

①用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
②求y与x、z与x的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电脑公司有5名产品推销员,其工作年限与年推销金额的数据如表:

推销员编号

1

2

3

4

5

工作年限

3

5

6

7

9

推销金额万元

2

3

3

4

5

求年推销金额y关于工作年限x的线性回归方程;

判断变量xy之间是正相关还是负相关;

若第6名推销员的工作年限是11年,试估计他的年推销金额.

(参考数据

参考公式:线性回归方程,其中为样本平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=(m2-5m+1)xm+1为幂函数,且为奇函数.

(I)求m的值;

(II)求函数g(x)=h(x)+x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinx+cosωx(ω>0)的图象与x轴交点的横坐标依次构成一个公差为 的等差数列,把函数f(x)的图象沿x轴向左平移 个单位,得到函数g(x)的图象,则(
A.g(x)是奇函数
B.g(x)关于直线x=﹣ 对称
C.g(x)在[ ]上是增函数
D.当x∈[ ]时,g(x)的值域是[2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期为π,且其图象向左平移 个单位后得到函数g(x)=cosωx的图象,则函数f(x)的图象(
A.关于直线x= 对称
B.关于直线x= 对称
C.关于点( ,0)对称
D.关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:①函数上的值域为;②函数是奇函数;③函数上是减函数;其中正确的个数为______

查看答案和解析>>

同步练习册答案