精英家教网 > 高中数学 > 题目详情

【题目】已知点是圆心为的圆上的动点,点,线段的垂直平分线交于点.

(1)求动点的轨迹的方程;

(2)矩形的边所在直线与曲线均相切,设矩形的面积为,求的取值范围.

【答案】(1) ;(2) .

【解析】试题分析:(1)利用定义法求椭圆的轨迹方程;(2)设的方程为 的方程为直线间的距离为,直线间的距离为 从而得到S的范围.

试题解析:

(1)依题

所以 (为定值),

所以点的轨迹是以为焦点的椭圆,其中

所以点轨迹的方程是

(2)①当矩形的边与坐标轴垂直或平行时,易得

②当矩形的边均不与坐标轴垂直或平行时,其四边所在直线的斜率存在且不为0,

的方程为 的方程为,则的方程为 的方程为,其中

直线间的距离为

同理直线间的距离为

所以

因为直线与椭圆相切,所以,所以,同理

所以

(当且仅当时,不等式取等号),

所以,即

由①②可知, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3﹣x2+4x+3,若在区间[﹣2,1]上,f(x)≥0恒成立,则a的取值范围是(
A.[﹣6,﹣2]
B.
C.[﹣5,﹣3]
D.[﹣4,﹣3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于0<a<1,给出下列四个不等式(
①loga(1+a)<loga(1+ );
②loga(1+a)<loga(1+ );
③a1+a<a
④a1+a<a
其中成立的是(
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x
(1)求函数f(x)的单调区间,并求函数f(x)的极值;
(2)若方程x3﹣3x﹣a+1=0有三个相异的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为矩形的四棱锥中, .

(1)证明:平面平面

(2)若异面直线所成角为 ,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若是函数的极值点,求曲线在点处的切线方程;

(2)若函数上为单调增函数,求的取值范围;

(3)设为正实数,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若实数a,b满足f(a)=0,g(b)=0,则(
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0.
(1)当a=﹣ ,c= 时,求函数f(x)的单调区间;
(2)当c= +1时,若f(x)≥ 对x∈(c,+∞)恒成立,求实数a的取值范围;
(3)设函数f(x)的图象在点P(x1 , f(x1))、Q(x2 , f(x2))两处的切线分别为l1、l2 . 若x1= ,x2=c,且l1⊥l2 , 求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+bx是定义在[a﹣1,3a]上的偶函数,那么a+b的值是(
A.﹣
B.
C.
D.﹣

查看答案和解析>>

同步练习册答案