精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱柱中,侧棱底面平面为棱的中点.

1)证明:

2)求二面角的平面角的正弦值;

3)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.

【答案】1)证明见解析;(2;(3.

【解析】

1)以为原点,分别以所在直线为轴,轴,轴建立空间直角坐标系,计算出,可证明出

2)计算出平面和平面的法向量,然后利用空间向量法计算出二面角的余弦定理,利用同角三角函数的基本关系可得出其正弦值;

3)设,计算出,利用空间向量法并结合条件直线与平面所成角的正弦值为,求出的值,即可求出.

1)如图所示,以为原点,分别以所在直线为轴,轴,轴建立空间直角坐标系,

依题意得.

易得,于是,所以

2)易得.设平面的法向量为,

消去,得,不妨取,可得法向量.

由(1)知,又,可得平面

为平面的一个法向量.

于是,从而

故二面角的平面角的正弦值为

3)易得.

,则有

可取为平面的一个法向量,

为直线与平面所成的角,

于是舍去),则

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的一个侧面为等边三角形,且平面平面,四边形是平行四边形,.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:

①若样本数据的方差为16,则数据的方差为64

②“平面向量夹角为锐角,则”的逆命题为真命题;

③命题“”的否定是“”;

④若:,则的充分不必要条件.

真命题的个数序号_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为菱形的四棱锥P-ABCD中,平面平面ABCD为等腰直角三角形,,点EF分别为BCPD的中点,直线PC与平面AEF交于点Q.

(1)若平面平面,求证:.

(2)求直线AQ与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆C),分别是椭圆C的左,右焦点,点D在椭圆上,且的面积为.

1)求椭圆C的方程;

2)过的直线l与椭圆C交于MN两点,在x轴上是否存在点A,使为常数?若存在,求出点A的坐标和这个常数;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形,平面平面是边长为4的等边三角形,的中点.

(1)求证:

(2)若直线与平面所成角的正弦值为,求平面 与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,讨论的单调性;

(2)若,且对于函数的图象上两点 ,存在,使得函数的图象在处的切线.求证;.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,命题p:函数内单调递增;q:函数仅在处有极值.

1)若命题q是真命题,求a的取值范围;

2)若命题是真命题,求a的取值范围.

查看答案和解析>>

同步练习册答案