【题目】如图,在四棱锥中,已知平面平面是边长为2的等边三角形,点是的中点,底面是矩形,,为上一点,且.
(1)若,点是的中点,求证:平面平面;
(2)是否存在,使得直线与平面所成角的正切值为?若存在,求出的值;若不存在,请说明理由.
【答案】(1)证明见解析;(2)存在;
【解析】
(1)先根据三角形的中位线和矩形的性质得到线线平行,再根据面面平行的判定定理证明即可;(2)建立空间直角坐标系,利用空间向量法求解.
解:(1)因为,所以为的中点,
因为点是的中点,所以,
又底面是矩形,所以,所以.
在中,由点是的中点,为的中点,得.
又,平面,平面,
,平面,平面,
所以平面平面.
(2)连接,因为是边长为2的等边三角形,点是的中点,所以.又平面平面,平面平面,
所以平面.
以点为坐标原点,所在直线分别为轴,过点且平行于的直线为轴建立如图所示的空间直角坐标系,
则,.
设平面的法向量为,
则得所以,令,则,
所以平面的一个法向量为.
设直线与平面所成的角为,
则.
假设存在符合题意的,
因为,所以,
所以,化简整理得,得.
所以当,即为线段的中点时,直线与平面所成角的正切值为.
科目:高中数学 来源: 题型:
【题目】已知点,直线:,点为上一动点,过作直线,为的中垂线,与交于点,设点的轨迹为曲线Γ.
(1)求曲线Γ的方程;
(2)若过的直线与Γ交于两点,线段的垂直平分线交轴于点,求与的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①函数在上单调递减,在上单调递增;
②若函数在上有两个零点,则的取值范围是;
③当时,函数的最大值为0;
④函数在上单调递减;
上述命题正确的是_________(填序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱中,侧面为菱形,,,侧面为正方形,平面平面.点为线段的中点,点在线段上,且.
(1)证明:平面平面;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.
(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.
女生 | 男生 | 总计 | |
获奖 | |||
不获奖 | |||
总计 | |||
附表及公式:
其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,过点的直线l与抛物线交于A,B两点,以AB为直径作圆,记为,与抛物线C的准线始终相切.
(1)求抛物线C的方程;
(2)过圆心M作x轴垂线与抛物线相交于点N,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:
(1)若此次知识竞答得分整体服从正态分布,用样本来估计总体,设,分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求,的值(,的值四舍五入取整数),并计算;
(2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为,抽到36元红包的概率为.已知高三某同学是这次活动中的幸运者,记为该同学在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.
参考数据:;;.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com