精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,的中点,且.

(1)求证:平面(2)求三棱锥的体积.

【答案】解:(1)见解析;(2)·CD

A1B1×B1B×CD×2×2×.

【解析】

本题考查线线垂直,线面垂直及多面体的体积的求法技巧,转化思想的应用,考查计算能力

1)证明CD⊥BB1,通过BB1⊥ABAB∩CD=D,即可证明BB1⊥ABC

2)所求的体积进行等价转化可以知道几何体的体积.

解:(1)∵ACBCDAB的中点,∴CD⊥AB,又∵CD⊥DA1∴CD⊥平面ABB1A1∴CD⊥BB1

BB1⊥ABAB∩CDD∴BB1平面ABC

(2)(1)CD⊥平面AA1B1B,故CD是三棱锥CA1B1D的高,

Rt△ACB中,ACBC2∴AB2CD

BB12·CD

A1B1×B1B×CD×2×2×

请在此输入详解!

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,

1)求异面直线所成角的正切值;

2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题:

,则的逆否命题为真命题

函数在区间上为增函数的充分不必要条件

③若为假命题,则均为假命题

④对于命题,则为:

其中真命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高一年级学生学习数学的状态,从期中考试成绩中随机抽取50名学生的数学成绩,按成绩分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

(1)由频率分布直方图,估计这50名学生数学成绩的中位数和平均数(保留到0.01);

(2)该校高一年级共有1000名学生,若本次考试成绩90分以上(含90分)为优秀等次,则根据频率分布直方图估计该校高一学生数学成绩达到优秀等次的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两地生产同一种瓷器,现从两地的瓷器中随机抽取了一共300件统计质量指标值,得到如图的两个统计图,其中甲地瓷器的质量指标值在区间的频数相等.

甲地瓷器质量频率分布直方图 乙地瓷器质量扇形统计图

1)求直方图中的值,并估计甲地瓷器质量指标值的平均值;(同一组中的数据用区间的中点值作代表)

2)规定该种瓷器的质量指标值不低于125为特等品,且已知样本中甲地的特等品比乙地的特等品多10个,结合乙地瓷器质量扇形统计图完成下面的列联表,并判断是否有95%的把握认为甲、乙两地的瓷器质量有差异?

物等品

非特等品

合计

甲地

乙地

合计

附:,其中.

0.10

0.05

0.025

0.01

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3个红球与3个黑球随机排成一行,从左到右依次在球上标记123456,则红球上的数字之和小于黑球上的数字之和的概率为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际羽毛球比赛规则从20065月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为时,获胜的一方需超过对方2分才算取胜,直至双方比分打成时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为,甲接发球贏球的概率为,则在比分为,且甲发球的情况下,甲以赢下比赛的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经榫卯起来,如图,若正四棱柱的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为( )(容器壁的厚度忽略不计)

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列的前项和为,已知,且对一切都成立.

(1)当.

①求数列的通项公式;

②若,求数列的前项的和

(2)是否存在实数,使数列是等差数列.如果存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案