分析 (1)由椭圆短轴长为$2\sqrt{3}$,离心率为$\frac{1}{2}$,列出方程组求出a,b,由此能求出椭圆C的方程.
(2)P(0,3),设A(x1,y1),B(x2,y2),则2x1=0+x2,2y1=3+y2,设直线m的方程为y=kx+3,联立$\left\{\begin{array}{l}{y=kx+3}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得:(3+4k2)x2+24kx+24=0,由此利用根的判别式、韦达定理,结合椭圆性质能求出直线m的斜率.
解答 解:(1)∵椭圆C的中心在原点O,焦点在x轴上,短轴长为$2\sqrt{3}$,离心率为$\frac{1}{2}$,
∴设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),
且$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{1}{2}}\\{2b=2\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,c=1,b=$\sqrt{3}$,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)P(0,3),设A(x1,y1),B(x2,y2),
∵A是PB的中点,∴2x1=0+x2,2y1=3+y2,
椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$的上下顶点分别是(0,$\sqrt{3}$),(0,-$\sqrt{3}$),
经检验直线m不经过这2点,即直线m斜率k存在,
设直线m的方程为y=kx+3,
联立椭圆和直线方程,$\left\{\begin{array}{l}{y=kx+3}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,
整理得:(3+4k2)x2+24kx+24=0,
△>0,${x}_{1}+{x}_{2}=\frac{-24k}{3+4{k}^{2}}$,${x}_{1}{x}_{2}=\frac{24}{3+4{k}^{2}}$,
$\frac{{x}_{1}}{{x}_{2}}+\frac{{x}_{2}}{{x}_{1}}$=$\frac{1}{2}+2$,
∴$\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}}{{x}_{1}{x}_{2}}$=$\frac{5}{2}$,
∴$\frac{(-24k)^{2}}{(3+4{k}^{2})•24}$=$\frac{9}{2}$,解得k=$±\frac{3}{2}$,
所以,直线m的斜率k=$±\frac{3}{2}$.
点评 本题考查椭圆方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、椭圆性质的合理运用.
科目:高中数学 来源: 题型:选择题
A. | 奇函数,且在区间$(0,\frac{π}{2})$上单调递增 | B. | 奇函数,且在区间$(0,\frac{π}{2})$上单调递减 | ||
C. | 偶函数,且在区间$(0,\frac{π}{2})$上单调递增 | D. | 偶函数,且在区间$(0,\frac{π}{2})$上单调递减 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({-∞,\frac{1}{2}})$ | B. | $({\frac{1}{2},+∞})$ | C. | $({0,\frac{1}{2}})$ | D. | (0,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com