4£®ÉèÔ²x2+y2+2$\sqrt{3}$x-13=0µÄÔ²ÐÄΪA£¬Ö±Ïßl¹ýµãB£¨$\sqrt{3}$£¬0£©ÇÒÓëxÖá²»Öغϣ¬l½»Ô²AÓÚC£¬DÁ½µã£¬¹ýB×÷ACµÄƽÐÐÏß½»ADÓÚµãE£®
£¨1£©Ö¤Ã÷|EA|+|EB|Ϊ¶¨Öµ£¬²¢Ð´³öµãEµÄ¹ì¼£·½³Ì£»
£¨2£©¹ýµãM£¨1£¬$\frac{\sqrt{3}}{2}$£©×öÖ±ÏßMA£¬MB·Ö±ðÓëÍÖÔ²ÏཻÓëA£¬BÁ½µã£¬Âú×ãÖ±ÏßMAÓëMBµÄÇãб½Ç»¥²¹£¬ÅжÏÖ±ÏßABµÄбÂÊÊÇ·ñΪ¶¨Öµ£¬ÈôΪ¶¨ÖµÇó³ö´Ë¶¨Öµ£¬Èô²»Îª¶¨ÖµËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾ÝÈý½ÇÐÎÏàËƵõ½$\frac{DE}{AD}$=$\frac{BE}{AC}$£¬µÃµ½AE+DE=4£¬¹ÊEA+EB=4ÊǶ¨Öµ£¬
£¨2£©Éè³öÖ±Ïß·½³Ì£¬ÁªÁ¢·½³Ì×飬Çó³öx1+1=$\frac{{9k}^{2}-4\sqrt{3}k}{{4k}^{2}+1}$£¬x2+1=$\frac{{9k}^{2}+4\sqrt{3}k}{{4k}^{2}+1}$£¬¸ù¾Ýy1-y2=k£¨x1-1£©+k£¨x2-1£©£¬Çó³öÖ±ÏßABµÄбÂÊÊǶ¨Öµ¼´¿É£®

½â´ð £¨1£©Ö¤Ã÷£º¡ßBE¡ÎAC£¬¡à¡÷BDE¡×¡÷CAD£¬
¡à$\frac{DE}{AD}$=$\frac{BE}{AC}$£¬¡ßAD=AC=4£¬¡àDE=BE£¬¡ßAE+DE=4£¬
¹Ê|EA|+|EB|=4ÊǶ¨Öµ£¬
ÓÉÍÖÔ²µÄ¶¨ÒåµÃ£º$\frac{{x}^{2}}{4}$+y2=1£¬£¨y¡Ù0£©£»
£¨2£©½â£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ö±ÏßMAµÄ·½³ÌÊÇy=k£¨x-1£©+$\frac{\sqrt{3}}{2}$£¬
Ö±ÏßMBµÄ·½³ÌÊÇy=-k£¨x-1£©+$\frac{\sqrt{3}}{2}$£¬
¹Ê$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}{+y}^{2}=1}\\{y=k£¨x-1£©+\frac{\sqrt{3}}{2}}\end{array}\right.$£¬ÏûÈ¥yµÃ£º
£¨4k2+1£©x2+£¨4$\sqrt{3}$k-8k2£©x+4k2-4$\sqrt{3}$k-1=0£¬
x1=1£¬x2-1=-$\frac{4\sqrt{3}k+2}{{4k}^{2}+1}$£¬
¹Êy1-y2=k£¨x1-1£©+k£¨x2-1£©£¬
ÔòÖ±ÏßABµÄбÂÊKAB=$\frac{{y}_{2}{-y}_{1}}{{{x}_{2}-x}_{1}}$=$\frac{-4k}{-9\sqrt{3}k}$=$\frac{\sqrt{3}}{6}$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±Ïß·½³Ì¡¢ÍÖÔ²µÄ·½³ÌÎÊÌ⣬¿¼²éÖ±ÏߺÍÍÖÔ²µÄ¹Øϵ£¬ÊôÓÚѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª¼¯ºÏA={x¡ÊN|-2£¼x£¼3}£¬Ôò¼¯ºÏAÖеÄÔªËØÊÇ£¨¡¡¡¡£©
A£®-2£¬-1£¬0£¬1£¬2£¬3B£®0£¬1£¬2£¬3C£®0£¬1£¬2D£®1£¬2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼÊÇÒ»¸öÀ³µÊ¾Òâͼ£¬¸ÃÀ³µµÄ°ë¾¶Îª4.8m£¬Ô²ÉÏ×îµÍµãÓëµØÃæµÄ¾àÀëΪ0.8m£¬À³µÃ¿60sת¶¯Ò»È¦£¬Í¼ÖÐOAÓëµØÃæ´¹Ö±£¬ÒÔOAΪʼ±ß£¬ÄæʱÕëת¶¯¦È½Çµ½OB£¬ÉèBµãÓëµØÃæµÄ¾àÀëΪhm£®
£¨1£©ÇóhÓë¦ÈÖ®¼äµÄº¯Êý½âÎöʽ£»
£¨2£©Éè´ÓOA¿ªÊ¼×ª¶¯£¬¾­¹ýts´ïµ½OB£¬ÇóhÓëÖ®¼äµÄº¯Êý½âÎöʽ£¬²¢¼ÆËã¾­¹ý45sºóÀ³µ¾àÀëµØÃæµÄ¸ß¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªº¯Ð§f£¨x£©=$\left\{\begin{array}{l}{x-sinx£¬x£¼0}\\{{x}^{3}+1£¬x¡Ý0}\end{array}\right.$£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©Óм«ÖµB£®f£¨x£©ÓÐÁãµãC£®f£¨x£©ÊÇÆ溯ÊýD£®f£¨x£©ÊÇÔöº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªµãF£¨-1£¬0£©ÊÇÍÖÔ²$C£º\frac{x^2}{a^2}+{y^2}=1£¨{a£¾0}£©$µÄÒ»¸ö½¹µã£¬µãMΪÍÖÔ²CÉÏÈÎÒâÒ»µã£¬µãN£¨3£¬2£©£¬Ôò|MN|+|MF|È¡×î´óֵʱ£¬Ö±ÏßMNµÄбÂÊΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èôz£¨1+i£©=i-2£¨iΪÐéÊýµ¥Î»£©£¬Ôò$\overline{z}$µÈÓÚ£¨¡¡¡¡£©
A£®-$\frac{1}{2}$+$\frac{3}{2}$iB£®-$\frac{1}{2}$-$\frac{3}{2}$iC£®-1+3iD£®-1-3i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ä³ÖÐѧѡȡ20ÃûÓÅÐãͬѧ²Î¼Ó2016ÄêÊýѧӦÓÃ֪ʶ¾ºÈü£¬½«ËûÃǵijɼ¨£¨°Ù·ÖÖÆ£¬¾ùΪÕûÊý£©·Ö³É[40£¬50£©£¬[50£¬60£©£¬[60£¬70£©£¬[70£¬80£©£¬[80£¬90£©£¬[90£¬100]£¬¹²6×éºó£¬µÃµ½ÆµÂÊ·Ö²¼Ö±·½Í¼£¨Èçͼ£©£¬¸ù¾ÝͼÖеÄÐÅÏ¢£¬»Ø´ðÏÂÁÐÎÊÌ⣮
£¨1£©´ÓƵÂÊ·Ö²¼Ö±·½Í¼ÖУ¬¹À¼Æ±¾´Î¿¼ÊԵĸ߷ÖÂÊ£¨´óÓÚµÈÓÚ80·ÖÊÓΪ¸ß·Ö£©£»
£¨2£©Èô´Ó³É¼¨ÔÚ[70£¬90£©µÄѧÉúÖÐËæ»ú³éÈ¡2ÈË£¬Çó³éµ½µÄѧÉú³É¼¨È«²¿ÔÚ[80£¬90£©µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®£¨1£©ÒÑÖªx£¾2£¬Çóx+$\frac{9}{x-2}$µÄ×îСֵ£»
£¨2£©¼ÆË㣺$\frac{-2\sqrt{3}+i}{1+2\sqrt{3}i}$+$£¨\frac{\sqrt{2}}{1-i}£©$2016£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈôÖ±Ïßl1£ºx+4y-1=0Óël2£ºkx+y+2=0»¥Ïà´¹Ö±£¬ÔòkµÄֵΪ-4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸